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Abstract

Climate change is one of the most urgent challenges for humanity, requiring a smooth and controlled

transition to a low-carbon economy. The literature has highlighted the importance of building a

portfolio of climate policies that can be pursued jointly. Then, this paper looks at the effects of a

macroprudential policy acting on the credit constraint in order to reallocate resources in favor of non-

polluting capital. To do this, we use a model composed of heterogeneous agents with infinite lifetimes,

of two sectors, the polluting and the non-polluting sector, and of a macroprudential policy in the form

of a credit constraint. We then show that this policy has a positive effect on the redirection of financing

towards the non-polluting sector, and that this effect is all the stronger when the technology of the

non-polluting sector is less efficient than that of the polluting sector. We also show that this policy

does not allow for a complete energy transition, and that it must be coupled with other climate policies

in order to avoid a situation of environmental no-return.
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1 Introduction

“195 Nations Set Path to Keep Temperature Rise Well Below 2 Degrees Celsius” - Historic Paris

Agreement on Climate Change (Press Release) – 2015

Figure 1: Total economic losses, thousand USD (adjusted), OECD and OECD partner countries, 1990-
2022

The last four decades have seen a significant increase in the number of natural disasters worldwide,

leading to growing economic losses. Forecasts point to rising temperatures and weather conditions

continuing to worsen in a non-linear fashion, with irreversible consequences for the environment and

the economy. Indeed, the study conducted by the World Meteorological Organization (WMO) shows

a significant increase in economic losses linked to natural disasters over the last fifty years. Average

daily losses have risen from 49 million dollars in the 1970s to 383 million dollars in 2010. Hurricanes

Harvey, Maria and Irma in 2017 were among the most costly disasters, accounting for 35% of total

global economic losses between 1970 and 2019. The OECD’s Climate Action Monitor 2023 also indi-

cates that economic losses due to natural disasters in 2022 have been estimated at $270 billion, with

insured losses of around $120 billion, one of the highest on record.

Launched following the Paris agreements in 2015, the energy transition now appears to be a ma-

jor economic, social and societal challenge, with the potential to generate high social costs if it is not

carried out optimally.
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On 29 September 2023, Christine Lagarde spoke on this subject at the international conference ”En-

suring an orderly energy transition: Europe’s competitiveness and financial stability in a period of

global energy transformation”, highlighting three elements ”essential to a smooth transition: avoiding

procrastination, understanding the challenges, and sharing the burden fairly”.

This speech highlights the need to understand the challenges and limits associated with the energy

transition so that it can be carried out in a controlled manner.

One of these challenges is to take account of financial frictions, and more specifically those relating to

credit constraints. This type of information asymmetry hinders the redirection of funding towards the

non-polluting sector.

Several theoretical studies, including Acemoglu and al. (2012), Golosov and al. (2009), or

Gerlagh, Kverndokk and Rosendahl (2009), have shown how important it is for institutions to

have a range of tools to deal effectively with environmental emergencie, and to allow a smooth transi-

tion. In addition, all the policies put in place address a specific risk. One of these risks, as the research

carried out by Carattini and al. (2022) shows, is the presence of financial frictions when a climate

policy is put in place. The presence of asymmetric information has also been widely studied, as shown

by the research of Mian and Sufi (2009), Allen and Gale (1994) or Bernanke, Gertler and

Gilchrist (1994). Finally, although the literature on this subject is very thin, it does offer a basis for

classifying polluting and non-polluting assets.

Then, although the authorities already have a number of tools for effectively redirecting funding

towards greener, environmentally-friendly technologies, namely taxes (carbon tax) and subsidies, we

note that the literature does not offer policy tools to reduce the effects of financial frictions and support

the energy transition.

In this paper, we design a model that highlights the effectiveness of macroprudential policies as a

support on energy transition by incorporating a credit constraint. The main contribution of this pa-

per, in the light of the existing literature, is based on the integration of a credit constraint enabling

financing to be redirected flexibly towards the non-polluting sector. Furthermore, this tool provides a

certain flexibility in its implementation, which Pigouvian tax policies do not allow.

To do this, we consider a dynamic general equilibrium model composed of agents with infinite lifetimes.

The agents in this economy are heterogeneous. Households, considered as patient, will save, whereas

entrepreneurs, considered as impatient here, will invest in two types of capital : polluting and non-
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polluting. Moreover, through their willingness to borrow, these entrepreneurs will face imperfections

in the credit market, which will be modelled by a collateral constraint.

Generally speaking, this model is in line with the RBC models in its macroeconomic structure, incor-

porating pollution that will affect the well-being of agents.

Several notable results can be highlighted. This paper shows that, compared with a model with-

out macroprudential policy (modelled by an unsaturated credit constraint), we observe a significant

increase in the share of non-polluting energy in equilibrium. The effectiveness of this policy also de-

pends on the efficiency of the technology specific to the non-polluting sector. The less efficient the

technology, the greater the effect of the macroprudential policy in redirecting financing to the non-

polluting sector.

Furthermore, our simulations also show that implementing this policy will not prevent a situation of

environmental no-return. It therefore needs to be coupled with other climate policies.

This paper will be divided into 10 sections. Section 2 reviews the related literature. Section 3 presents

the model used. Section 4 is related to the research of the equilibrium. Section 5 focuses on the the

static comparison at the balance growth path. Section 6 includes the calibration of the parameters for

the macroeconomic and environmental variables that aim to fit some features of the observed data for

the US economy. Section 7 presents the differences with the case when we have an unsaturated credit

constraint. Section 8 discusses how the value of q influences the number of trajectories in the economy.

Section 9 shows that the implementation of this policy can not prevent from an environmental disaster.

Section 10 concludes and proposes some extensions.

2 Literature Review

2.1 The need for effective climate policies

The primary motivation for this research paper is to look at the construction of a macroprudential

policy to avert an environmental disaster. Consequently, it is necessary to take an interest in the var-

ious studies on the integration of environmental constraints in the models, to understand the extent

to which the implementation of appropriate policies can prevent such a situation from arising.

Environmental constraints were taken into account fairly early on. This is particularly true of Solow

(1974) who presented an economic vision of the environmental constraint by showing that it is possible

to reconcile economic growth and preservation of the environment. One of the pioneering models in
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this field is Nordhau’s DICE model (1994), which incorporates climate change into its framework

after working on an approach to aggregate damages in 13 different regions across the world.

At first, most of the models created focus on commutable general equilibrium with exogenous technol-

ogy. This is notably the case of Golosov and al. (2009) who determined the structure of an optimal

policy to be implemented in the case of exhaustible resources in a context of exogenous technologies.

More in line with recent literature and no longer considering technology as an exogenous factor, Ace-

moglu and al. (2012) present a model of growth that incorporates environmental constraints as well

as endogenous shocks due to the fact that resources may run out. In their work, pollution will affect

the well-being of agents, as in the model presented in this paper but another way of incorporating

pollution-related externalities is to include them in the TFP, along the lines of the research carried out

by Heutel (2012).These works also give recommendations to political interventions. This body of

work suggests that growth and the integration of environmental constraints are possible, although this

assertion has been the subject of debate, particularly in the work of Stokey (1998), who announced

that the environmental constraint constitutes an endogenous limit to growth.

However, for growth to be possible while integrating environmental constraints, the implementation

of policies is essential. Indeed, the work of Acemoglu and al. (2012) advocates the introduction of

subsidies coupled with a taxation system and Gerlagh, Kverndokk and Rosendahl (2009) have

completed this idea by pointing out that the use of research subsidies would make it possible to reduce

carbon taxes.

Furthermore, researchs lead by Carattini, Heutel and Melkadze (2021) confirms these elements.

The authors state that a macroprudential policy without a carbon tax will have very little effect.

The first part of this literature review highlights the need for institutions to develop a range of tools

to deal effectively with environmental emergencies and reduce the risks associated with this transition

phase.

Moreover, this paper is in line with RBC models such as the model proposed by Heutel (2012), while

integrating the negative externalities linked to pollution into the welfare function of agents, as done by

Acemoglu and al. (2012) in their paper. It is therefore a question of developing a macroprudential

policy, to be implemented in conjunction with other climate policies, as is emphasised in most of the

literature.

2.2 Financial frictions as a justification for a macroprudential policy

As this research paper focuses on the effects of implementing macroprudential policy, it is necessary

to justify its legitimacy. This emerges when we look at the presence of financial frictions and their
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effects.

Information asymmetries between borrowers and lenders represent a major facet of financial fric-

tions and a major challenge in financial markets, affecting credit conditions and economic dynamics.

Empirical research by Mian and Sufi (2009) has highlighted the impact of these asymmetries on

credit allocation, revealing how information imbalances can lead to restrictive credit conditions, de-

spite the legitimacy of borrowers. This dynamic was also explored by Allen and Gale (1994), who

examined how information asymmetries can lead to inefficiencies in financial markets and distortions

in the allocation of resources. Furthermore, the work of Stiglitz and Weiss (1981) has also made it

possible to understand how information asymmetries can lead to credit rationing, even in the presence

of solvent borrowers.

Thus, we have to focus on a specific part of the information asymmetries : the credit constraint.

Indeed, credit constraints, as a major impediment to access to finance for many economic actors, exert

a significant influence on macroeconomic dynamics. The pioneering work of Bernanke, Gertler and

Gilchrist (1994) highlighted the way in which these constraints can amplify the effects of economic

shocks by triggering negative feedback mechanisms through the financial markets. This amplification

of shocks was studied in depth by Kiyotaki and Moore (1997), who explored how credit constraints

can lead to self-perpetuating credit cycles, thereby amplifying economic fluctuations. In addition, re-

search by Cúrdia and Woodford (2015) has examined how credit constraints can affect optimal

monetary policy, highlighting the importance of taking these constraints into account in macroeco-

nomic management.

We can also mention the transaction costs associated with financial activities, which have a signif-

icant impact on macroeconomic dynamics. The work of Gertler and Gilchrist (1994) examined in

detail how these costs can influence the dynamics of business cycles by amplifying the effects of finan-

cial shocks. This amplification of shocks was also studied by Brunnermeier and Sannikov (2014),

where they examined how transaction costs can exacerbate macroeconomic volatility by amplifying

the impact of financial shocks. Furthermore, research by Holmström and Tirole (1997) analysed

how transaction costs can affect the efficiency of financial intermediation, highlighting their impact on

the transmission of monetary policy and financial stability.

To complete the various sections above, we can cite other studies that have helped to understand

the macroeconomic effects of financial frictions.

Indeed, the study conducted by Brunnermeier, Eisenbach and Sannikov (2013) showed that
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the presence of financial frictions in the system leads to the persistence of shocks, with significant non-

linear amplification effects in a situation of illiquidity. The study by Gertler and Kiyotaki (2010)

also shows that financial frictions can amplify economic fluctuations. The authors also highlight the

fact that credit constraints can worsen recessions by restricting companies’ access to the financing they

need to maintain or develop their activities.

Consequently, the effects of these financial frictions cannot be neglected and lead us to question the

type of climate policy that should be put in place to deal with them.

Financial frictions are thus a key element of our economies, as well as the financial stability as recent

decades have shown. It is therefore necessary to understand the interactions between these financial

frictions and the different types of climate policy in order to build a suitable policy model. Indeed, as

announced by Carattini and al. (2022), a risk to the stability of the macro-financial system may

arise when a climate policy is combined with the presence of financial frictions.

Based on a DSGE model of an economy with two key market failures, namely a climate externality

and financial frictions, the research conducted by Carattini, Heutel and Melkadze (2023) showed

that macroprudential policies can reduce the risk of a recession following a major climate policy. This

study also highlighted two major conclusions concerning the limits and advantages of macroprudential

policies. Macroprudential policies can help to support economic growth once climate policies have

been implemented (see the work carried out by Acemoglu and al. (2012) on the introduction of

taxes and subsidies). However, it is important to note that macroprudential policies alone are ineffec-

tive in addressing climate externality in the absence of a comprehensive climate policy, which is one

of the limitations of our model. Furthermore, the study conducted by Brunnermeier, Eisenbach

and Sannikov (2013) shows that the actions of institutions to limit financial frictions are not solely

positive, as these actions introduce an additional fragility linked to price instability.

To conclude this section on financial frictions and their systemic effects, it should be noted that

the literature has highlighted the need for macroprudential and others climate policies to be comple-

mentary (and not substitutable), as each type of policy makes it possible to compensate for a specific

market failure. In this case, the objective of the model presented in this research paper is to overcome

the financial frictions related to credit constraints in order to improve the financial stability while

taking environmental issues into account.
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2.3 The need for a classification between polluting and non-polluting assets

These notions are directly linked to the model presented in this thesis. Indeed, the construction of

a macroprudential policy aimed at reducing financial frictions related to credit constraints while in-

tegrating environmental constraints requires a reflection on the classification of assets between green

and brown. Before beginning the final part of this literature review, it should be noted that these

issues are relatively recent and that indicators for differentiating between green and brown assets are

still being developed.

With a view to classifying economic activities and identifying those that are sustainable, in 2018

the European Commission launched the European Green Taxonomy, which the EU Member States

adopted in June 2020. This green label indicates that, while respecting minimum human rights and

labour law guarantees, an economic activity contributes to at least one environmental objective set by

the European Commission.

The ECB has also underlined its commitment to the environment, by including the notions of green

and brown collateral accepted as collateral for refinancing outstandings allocated to commercial banks.

The measure relates to the risk posed by brown assets, so commercial banks are being asked to provide

more brown assets for a same amount of green assets if they wish to use them as collateral. As a result,

the value of brown assets is falling.

However, despite all these measures, there are no universal classifications between brown and green

assets, and the literature on this subject remains fairly thin. We can nevertheless cite the research of

André and al. (2022) who developed a series of indicators as a reference. However, they conclude

this study by indicating that an improved and harmonised framework for the provision of non-financial

information is essential in order to conduct an accurate analysis and adequately monitor the financial

sector’s exposure to the impacts of climate change.

This is therefore an area for future research.

3 The model

The model presented is made up of four blocks, namely households, entrepreneurs and firms, which

are in line with the work proposed by Genna (2021), as well as the environmental block inspired by

the work of Acemoglu and al. (2012).

Macroprudential policy will be integrated into the entrepreneur’s block in the form of a credit con-
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straint.

3.1 Households

We consider an infinite-horizon discrete time economy. We will considers that representative household

consumes goods and work to maximize its inter-temporal utility. The utility function is modelled as

follows :

U(Ct, Lt, St) = ln(CH
t )− χ ln(Lt) +

√
St

Here, Ct, Lt, and St respectively represent the household consumption, the number of hours worked,

and the quality of the environment at time t. The coefficient χ is a scale parameter that affects the

disutility of labor supply.

Furthermore, the household aims to maximize its lifetime expected utility given by the following

expression:

E0

∞∑
t=0

βt(ln(CH
t )− χ ln(Lt) +

√
St)

where E0 represents the mathematical expectation of all variables’ future values and β ∈ (0, 1) repre-

sents the constant discount factor. This β tends to be high, indicating a relatively weak preference for

immediate consumption over future consumption.

Moreover, the budget constraint specific to households is given by the equality:

CH
t +Dt = wtLt +RtDt−1

The left-hand side of the equation represents household expenditures. It consists of the variable dt,

representing the stock of deposits at time t, and the variable CH
t , which is consumption at time t.

Therefore, the household will make a trade-off between consumption and deposits.

The right-hand side of the equation represents household incomes, which are composed of two ele-

ments. We have wtLt, representing income earned from labor, as well as RtDt−1, representing the

return on deposits made in the previous period. Indeed, households derive income from supplying

labor and capital to firms at rental rates wt and Rt.
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The utility maximization program of the representative household is then given by :

∀t max
Ct,Lt,dt

∞∑
t=0

βt(ln(CH
t )− χ ln(Lt) +

√
St)

subject to:

CH
t +Dt = wtLt +RtDt−1

The first order condition of this household bloc are given by, according to appendix 1 :

wt · Lt +Rt ·Dt−1 = CH
t +Dt (4)

wt = χ · C
M
t

Lt
(5)

1 =
CM

t

CM
t+1

·Rt+1 · β (6)

Equation (4) is the budget constraint of households. Equation (5) is the labor equation, determining

the amount of labor the household is willing to offer, as a function of wages. The last characteristic

equation of this bloc is equation (6), which is the Euler equation, allows us to link present consumption

to future consumption in order to determine the intertemporal choices made by households.

3.2 Entrepreneurs

Similarly to the previous case, we consider an infinity of entrepreneurs in an infinite-horizon discrete

time economy. We will consider that the representative entrepreneur consumes only goods to maximize

their inter-temporal utility. The utility function is modeled as follows :

U(CE
t , St) = ln(CE

t ) +
√

St

where CE
t represents the entrepreneur’s consumption, and St represents the environmental quality.

Moreover, the entrepreneur aims to maximize their lifetime expected utility given by the following
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expression:

E0

∞∑
t=0

γt(ln(CE
t ) +

√
St)

where E0 represents the mathematical expectation of all variables’ future values and γ ∈ (0, 1) rep-

resents the constant discount factor. Note that γ < β, which means that the entrepreneur is more

impatient than the household, thus explaining why they borrow.

Furthermore, the budget constraint of the entrepreneurs is given by the equality :

CE
t + Ict + Idt +RtBt−1 = Rc

tK
c
t +Rd

tK
d
t +Bt

The left-hand side of the equation represents the entrepreneur’s expenses. It consists of the variable

CE
t , which is consumption at time t, Ict representing investment in clean capital at time t, Idt repre-

senting investment in dirty capital at time t, and RtBt−1 which is the repayment of the loan made

in period t − 1 (with the amount Bt−1) at the rate Rt. Therefore, the entrepreneur will make a first

trade-off between consumption and investments, as well as a second trade-off between investment in

clean or dirty capital.

The right-hand side of the equation represents the entrepreneur’s income, composed of two elements.

We have bt, which is the amount borrowed in period t, as well as the income derived from investments

in clean and dirty capital at rates Rc
t and Rd

t .

The utility maximization program of the representative entrepreneur is given by:

∀t max
CE

t ,Kc
t ,K

d
t ,Bt

∞∑
t=0

γt(ln(CE
t ) +

√
St)

subject to:

(i) CE
t + Ict + Idt +RtBt−1 = Rc

tK
c
t +Rd

tK
d
t +Bt

(ii) Kd
t+1 = Idt + (1− δ)Kd

t

(iii) Kc
t+1 = q ∗ Ict + (1− δ)Kc

t

(iv) Rt+1Bt ≤ θcR
c
t+1K

c
t+1 + θdR

d
t+1K

d
t+1

Equation (i) restates the budget constraint mentioned earlier. Equations (ii) and (iii) represent the

capital accumulation of dirty and clean capital respectively. Note that the capital stock experiences

depreciation at a rate of δ per period. Furthermore, there is a difference in technology between the

polluting and non-polluting sectors, this difference being given by the structural parameter q.

Finally, equation (iv) represents the credit constraint, through which macroprudential policy is ap-
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plied, represented by the coefficients θc and θd with θc > θd. Indeed, the entrepreneur will not be able

to take out a loan whose amount exceeds a proportion of clean and dirty capital.

The first order condition of this entrepreneurs bloc are given by, according to appendix 2 :

θcR
C
t+1K

c
t+1 + θdR

d
t+1K

d
t+1 = Rt+1Bt (14)

1/q + θc
Rc

t+1

Rt+1

Rc
t+1 + (1− δ) 1q − θcRc

t+1

=
1 + θd

Rd
t+1

Rt+1

Rd
t+1 + (1− δ)− θdRd

t+1

(19)

CE
t + [Kd

t+1 − (1− δ)Kd
t ] +

[
Kc

t+1 − (1− δ)Kc
t

q

]
+RtBt−1 = Rc

tK
c
t +Rd

tK
d
t +Bt (20)

To conclude with this second bloc, the entrepreneur equilibrium is given by the equation (19) which

is the no arbitrage condition between clean and dirty capital. This condition is essential, otherwise

all the investment would go to the same sector. The equation (14) is also an essential equation for

this blocs. It is the saturated borrowing constraint. The third characteristic equation is given by (20),

which is the budget constraint in which we inject the law of motion of both kind of capital.

Corrolary 1 :

Note that the credit constraint is only saturated under certain conditions, namely :

1. The first borrowing constraint binding is given by Rc
t+1 +

1−δ
q > Rt+1

q > θcR
c
t+1.

2. The second borrowing constraint binding is given by Rd
t+1 + (1− δ) > Rt+1 > θdR

d
t+1.

3.3 Firm

All markets are assumed to be perfectly competitive.

The firm produces a single output denoted by Yt obtained through the use of labor Lt and capital Kt.

In addition, we introduce growth through labor productivity denoted At, which grows exogenously at

the rate λ. This production takes the form of a Cobb-Douglas function denoted by:

Yt = (AtLt)
1−α ·Kα

t with At+1 = At · (1 + λ)

where α represents the output elasticity of capital.

Furthermore, the capital Kt itself is composed of two types of capital. The first type of capital is
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denoted as Kc
t and represents all non-polluting machines (the ’c’ stands for clean). The second type of

capital used is, on the contrary, denoted by Kd
t and represents all polluting machines (the ’d’ stands

for dirty). This capital Kt is represented through a CES function:

Kt =
(
(Kc

t )
σ + (Kd

t )
σ
) 1

σ

Note that the clean capital and the dirty capital are used in equal proportions. Moreover, the coeffi-

cient σ is the parameter of elasticity of substitution. The higher this parameter, the more substitutable

the factors are between each other.

Finally, the firm wants to maximize its profits denoted by the difference between incomes and costs.

Consequently, the maximization program of the representative firm is given by:

maxπ = Yt − wtLt − rctK
c
t − rdtK

d
t

with

Yt = (AtLt)
1−α ·

(
(Kc

t )
σ + (Kd

t )
σ
)α

σ

Before computing the first-order condition, we can introduce a new notion which is a key element

of this model :

κt =
Kc

t
σ

Kc
t
σ +Kd

t
σ

(22)

This kappa will be the central element of our analysis in order to quantify the transition to a less

polluting economy. Indeed, the closer we are from 1, the higher the share of no polluting energy.

The first order condition of this firm bloc are given by, according to appendix 3 :

wt = (1− α)
Yt

Lt
(21)

Rd
t = α(1− κt)

Yt

Kd
t

(23)

Rc
t = ακt

Yt

Kc
t

(24)
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Then, we can conclude that equation (21), (23) and (24) maximize the profit of the firm.

These equations represent respectively the wage, the rental price of the dirty capital, and the rental

price of the clean capital.

Furthermore, equation (22) is also a characteristic equation of this bloc.

3.4 Environment

This section is in line with the one proposed by Xepapadeas and al. (2023). Indeed, following the

approach of Tahvonen and Kuuluvainen (1991) as well as Bovenberg and Smulders (1995),

they modeled environmental quality as a stock of natural capital which have regenerative capacity

nature and depreciates due to pollution, which is itself computed according to the stock of polluting

capital.

Then, the quality of the environment is governed by the following law of motion:

St+1 = −ξ ·Kd
t + (1 + θ) · St

where ξ is the rate of environmental degradation resulting from the use of dirty capital and θ is the

rate of environmental regeneration.

4 Equilibrium

4.1 Market clearing conditions

To complete the system of equations characterizing the equilibrium composed of (4), (5), (6), (14),

(19), (20), (21), (22), (23) and (24), we can introduce three market clearing conditions.

The first one concerns the goods market with :

Yt = CE
t + CM

t + ict + idt (25)

The second one announces that :

Dt = Bt (26)
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The last one gives :

Lt = 1 (27)

4.2 System reduction

From the 3 blocs and the market clearing conditions, we then get 13 equations characterizing the

equilibrium. By reworking this system of 13 equations, we get a reduced system of 7 equations with 7

variables. This reduced system is given by :

Dt = βRtDt−1 (28)

Kc
t+1

(
1

q
−

θcR
c
t+1

Rt+1

)
+Kd

t+1

(
1−

θdR
c
t+1

Rt+1

)
= γ

[(
Rc

t(1− θc) +
1− δ

q

)
Kc

t

+
(
Rd

t (1− θd) + 1− δ
)
Kd

t

]
(29)

1
q +

θcR
c
t+1

Rt+1

Rc
t+1 +

1−δ
q − θcRc

t+1

=
1 +

θdR
d
t+1

Rt+1

Rd
t+1 + 1− δ − θdRd

t+1

(30)

Dt =
θcR

C
t+1K

c
t+1 + θdR

d
t+1K

d
t+1

Rt+1
(31)

Rc
t = ακt

(Kc
t )

σ + (Kd
t )

σ

Kc
t

(32)

Rc
t

Rd
t

=
κt

1− κt

Kd
t

Kc
t

(33)

κt =
(Kc

t )
σ

(Kc
t )

σ + (Kd
t )

σ
(34)

4.3 Analytical results

By introducing growth through the exogenous parameters At, the steady state will be a balanced

growth path. Consequently, it is necessary to rewrite the system of 7 equations with 7 unknowns
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above to show the intensive variables, of the form :

xt =
Xt

At

with Xt being the variable we wish to deflate. In addition, we pose (1 + λ) = At+1

At
.

Note that in the above system, the variables to be transformed are Kc
t , K

d
t , and D because at BGP,

these three variables grow at the same rate, which in this case is λ.

Once the previous system has been rewritten in intensive form, we find the following analytical results

:

R∗ =
(1 + λ)

β
(35)

Rc∗ =

1
q

(
(1+λ)

γ − (1− δ)
)

1− θc + θc
β
γ

(36)

Rd∗ =

(1+λ)
γ − (1− δ)

1− θd + θd
β
γ

(37)

To simplify the following expressions, we have :

Ω∗ =
q
(
1− θc + θc

β
γ

)
1− θd + θd

β
γ

(38)

k̃c∗ =
α(

1 + (Ω∗)
σ

σ−1

)σ−α
σ

·
Ω∗
(
1− θd + θd

β
γ

)
(1+λ)

γ − (1− δ)
(39)

k̃d∗ =

(
1−κ∗

κ∗

)
·Rc∗ · k̃c∗

Rd∗ (40)

κ∗ =
1

1 + (Ω∗)
σ

σ−1
(41)

Corrolary 2 :
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These equations are the proof of the uniqueness and existence of this balance growth path.

4.4 Study of local dynamics

In order to study the local dynamics of this BGP, we used Taylor developments of order 1 with respect

to the values of the stationary state, with the aim of determining a system of 2 equations with 2

unknowns. All the characteristic equations are given in Appendix 4. These equations allow us to get

the following system of 2 equations with 2 unknowns :

 Ω21

(
k̃c
t+1−k̃c∗

k̃c∗

)
+Ω22

(
k̃d
t+1−k̃d∗

k̃d∗

)
= Ω23

(
k̃c
t−k̃c∗

k̃c∗

)
+Ω24

(
k̃d
t −k̃d∗

k̃d∗

)
(70)

Ω25

(
k̃c
t+1−k̃c∗

k̃c∗

)
− Ω26

(
k̃d
t+1−k̃d∗

k̃d∗

)
= Ω27

(
k̃c
t−k̃c∗

k̃c∗

)
− Ω28

(
k̃d
t −k̃d∗

k̃d∗

)
(71)

Posing K̃c
t+1 =

k̃c
t+1−k̃c∗

k̃c∗ and K̃d
t+1 =

k̃d
t+1−k̃d∗

k̃d∗ , we can rewrite this system of equations as follows:

Ω21 Ω22

Ω25 −Ω26

K̃c
t+1

K̃d
t+1

 =

Ω23 Ω24

Ω27 −Ω28

K̃c
t

K̃d
t

 (72)

The Jacobian matrix therefore appears :

J =
1

−Ω26Ω21 − Ω25Ω22

−Ω26Ω23 − Ω22Ω27 −Ω26Ω24 +Ω22Ω28

−Ω25Ω23 +Ω27Ω21 −Ω24Ω25 − Ω28Ω21


The point of finding this matrix form is to calculate the eigenvalues of this Jacobian matrix, in order

to determine the number of trajectories in the economy. To determine them, we need to do is carry

out a calibration to determine the various parameters of this matrix.

5 Static comparison at the balance growth path

Concerning the the static comparison of this steady state, a number of points can be made, in partic-

ular concerning the impact of the parameters q, θc and θd on κ∗ which represents the proxy for energy

transition, the closer κ is to 1, the higher the share of non-polluting energy.

The last equation (41) shows us that an increase in the structural factor q, representing the efficiency

of clean technologies in the non-polluting sector, leads to an increase of κ∗ and therefore encourages

the transition to a greener economy.

Similarly, the increase in θc will also promote and support the energy transition to a certain ex-

tent. Finally, the increase in θd will encourage investment in polluting sectors, and therefore act as a
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brake on the energy transition.

Consequently, although the macroprudential policy introduced in this model does not allow for a

complete energy transition (given by κ = 1), it can, however, support it and encourage a redirection of

investment towards non-polluting sectors. To achieve this, it is necessary to maximise θc and minimise

θd.

These static comparisons at steady state can be represented by the following graphs. In addition,

the python codes used to obtain them can be found in the appendices 5 and 6.

Figure 2: Effect of θc on the steady state
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Figure 3: Effect of θd on the steady state

6 Calibration

6.1 Calibration of the macroeconomic variables

This calibration covers 9 main parameters, which are summarised in the table below. In line with

RBC literature, we assume β = 0.99. As stated in the presentation of the model, entrepreneurs

are considered to be less patient than households, so we arbitrarily assume γ = 0.8. According to

Papageorgiou, Saam and Schulte (2017), we fix σ = 0.33. The next parameter is α. Based on

Bureau of Labor Statistics data and averaged from 2009 to 2019, then we get α = 0.4. In relation

to this same source, we will assume labor productivity growth at λ = 1.5% annually in the nonfarm

business sector from 2007 to 2024. In addition, the depreciation rate of capital calibrated following

Barro and Sala-i-Martin (2004), the value δ = 0.05 is widely used in macroeconomic literature.
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To conclude with this part, we arbitrarily assume the following values: q = 0.5, θc = 0.85, θd = 0.1.

Indeed, we set an initial condition of relative efficiency in the non-polluting sector such that q < 1.

This calibration also respects the saturation conditions of the credit constraint given by corollary 1.

Parameter Value Source

β 0.99 RBC Literature

γ 0.8 Arbitrary assumption

σ 0.33 Papageorgiou et al. (2017)

α 0.4 Bureau of Labor Statistics (2009-2019)

λ 1.5 % Bureau of Labor Statistics (2007-2024)

δ 0.05 Barro et Sala-i-Martin (2004)

q 0.5 Arbitrary assumption

θc 0.85 Arbitrary assumption

θd 0.1 Arbitrary assumption

Table 1: Summary of the macroeconomic variables

6.2 Calibration of the environmental variables

In the function concerning the law of motion of the environmental quality to study its evolution,

we based our calibration on several studies that have been made. The rate of regeneration of the

environmental stock fixed at θ = 0.04 comes from the calibration carried out by Nordhaus (1994)

and Fullerton and Kim (2008). And finally, ζ = 0.17 is set arbitrarily. However, we could have

estimated this parameter empirically from the annual emission of CO2 as done by Acemoglu and al.

(2012).

Parameter Value Source

θ 0.04 Nordhaus (1994), Fullerton et Kim (2008)

ζ 0.17 Arbitrary assumption

Table 2: Summary of the environmental variables
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7 Unsaturated credit constraint and the effects of macropru-

dential policy

The interest of this paper is to show the impact of macroprudential policy compared with a situation

in which no policy is implemented. Using the previous maximisation systems, the only difference

concerns the block of entrepreneurs in which the Lagrange coefficient associated with the borrowing

constraint is zero. All the calculations are presented in Appendix 7.

Note, however, that in this situation where the credit constraint is unsaturated, we obtain the following

corollary.

Corrolary 3 :

In the case where the credit constraint is not saturated, we obtain the following relationship, which

also enables us to determine the premium required for an investment in the non-polluting sector :

Rt+1 = Rd
t+1 + 1− δ = Rc

t+1 +
1 + δ

q
(73)

The following table shows the percentage differences between the kappa values obtained with and

without the introduction of macroprudential policy. Note that we only vary the value of q and that

we use the values given during calibration for θc = 0.85 and θd = 0.1. For each case, corollary 1 is

verified. All simulations were carried out using dynare.

Value of q Value of κ∗ with
macroprudential

policy

Value of κ∗

without
macroprudential

policy

Percentage
difference (from
without to with
introduction of

the policy)

0.5 0.43478 0.41547 +4.65%
1 0.519741 0.5 +3.95%
1.5 0.569231 0.5497 +3.55%
2 0.603581 0.584531 +3.25%
7 0.73856 0.722808 +2.18%

Table 3: Summary of κ values with and without macroprudential policy

Several elements can be highlighted from the results. Indeed they show that the introduction of
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this macroprudential policy will have a positive impact on the value of kappa for every values of q,

which indicates support for a less polluting economy.

We also observe that the lower the value of q, representing the technology associated with the non-

polluting sector, the more effective macroprudential policy is. This is because agents will tend, through

a substitution effect, to invest in the polluting sector when the value of q is low.

Consequently, the effects of this policy are positive and can be seen as supporting the energy transition.

Furthermore, it is interesting to implement this policy early on (when q is less than 1), in order to

have a greater positive effect on the redirection of capital towards the non-polluting sector.

8 The trajectory of the economy as a function of the q value

Our economy is made up of non-polluting capital and polluting capital, which represent the two pre-

determined variables of our model. Furthermore, section 4.4 gives us the Jacobian matrix, from which

we can now calculate the eigenvalues, in order to determine the number of trajectories of this economy.

In the case where we take the values given during calibration with q = 0.5, we obtain two eigenvalues,

both present in the unit circle. This allows us to say that there is a dynamic transition between the

initial period and the long term. The economy is therefore converging towards the balance growth path.

However, we may ask whether this conclusion is similar for all values of q.

The simulations carried out using Python, the codes for which can be found in appendices 8 and

9, allow us to graphically represent the value of the two eigenvalues as a function of q.
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Figure 4: First eigenvalue

Figure 5: Zoom on the first eigenvalue
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Figure 6: Second eigenvalue

As we can see from these graphs, one of the two eigenvalues is always included in the unit circle,

but the other eigenvalue is only in the unit circle for certain values of q, in this case we must have

approximately q > 0.2.

It will therefore be interesting to see whether this element can be verified empirically.

Consequently, if q > 0.2, our economy will converge towards the balance growth path and there is

therefore only one trajectory representing the dynamic transition between the initial period and the

long term. However, if q < 0.2, then our economy has no trajectory, indicating that there is no

transition and that the economy must be directly on the balance growth path from the initial period.

9 A situation of environmental disaster

This section allows me to show the need to combine this macroprudential policy with other types

of policy such as Pigouvian tax policies or subsidies. Indeed, we have seen that this type of macro-

prudential policy plays a supporting role in this energy transition by redirecting capital towards the

non-polluting sector, but does not allow the stock of polluting capital to fall, which will be the source

of an environmental disaster...
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To do this, I have carried out simulations in which I place the initial conditions directly on the balanced

growth path, where the stock of polluting capital grows at the same rate as labor productivity, which

is λ = 1.5%. We base ourselves on the initial values set out in the thesis by Genna (2021), i.e., the

initial stock of polluting capital is 15.1162 (value obtained from US data since 1970), as well as on the

law of motion of environmental quality. Note also that S0 = 100 < S̄, which is the maximum level of

environmental capital. Consequently, when the graph is displayed, it will be normal to see an initial

increase in St, followed by a decrease in this stock.

The Python code used to obtain the following graph can be found in Appendix 10.

Figure 7: A situation of environmental disaster

As the graph shows, environmental quality (modelled by the green curve) rises when the stock of

polluting capital (modelled by the blue curve) is relatively low. However, the growth of this polluting

capital leads to an inflection point at a certain point in the stock of polluting capital, resulting in a

significant drop in environmental quality until a point of no return is reached, modelled by St=0.

It is therefore necessary to implement several types of policy in a coordinated way to avoid reaching

this threshold of no return.
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10 Conclusion

Climate change is one of the most urgent challenges for humanity, and thus we need a clear under-

standing of its key challenges.

Based on the need highlighted in the literature to construct a portfolio of climate policies, and on

the presence of financial frictions relating to information asymmetries and more specifically to credit

constraints, this model looks at the implementation of a macroprudential policy to support the energy

transition. The flexible nature of such a policy should also be emphasised, in comparison with Pigou-

vian tax policies, which have been the source of protests and uprisings.

To do so, we present a dynamic general equilibrium model composed of heterogeneous agents with

infinite lifetimes. This model is composed of two sectors, the polluting and the non-polluting sector,

allowing us to determine the effects of a macroprudential policy, appearing in the form of a credit

constraint, on the redirection of financing towards the non-polluting sector. We also introduce the

environmental dimension which will impact, as Acemoglu and al. (2012), the well-being of agents

directly in the utility function.

Several results can be highlighted.

Firstly, compared with a model in which the credit constraint is not saturated, we observe a signifi-

cant positive effect of macroprudential policy on the redirection of financing towards the non-polluting

sector. It should also be noted that this effectiveness depends on the technological efficiency of the non-

polluting sector. Macroprudential policy is more effective when the technology of the non-polluting

sector is weaker than that of the polluting sector, thereby countering the trade-off between these two

sectors and supporting the energy transition.

Secondly, this technology relating to the non-polluting sector has an impact on convergence towards the

balance growth path. We observe that if q > 0.2, the economy will converge towards the balance growth

path. Conversely, if q ≤ 0.2, then the economy must be placed on this BGP directly at the initial state.

Furthermore, when we look at the BGP, we can say that macroprudential policy can be seen as

partial support for the energy transition because the value of the degree of pleagiability (θc and θd)

will impact the value of κ∗ but do not allow us to achieve an economy in which we only use non-

polluting technologies modelled by κ∗ = 1.

I would also like to stress in particular the fact that implementing this macroprudential policy does

not make it possible, in view of the simulations carried out, to inhibit a situation of environmental
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no-return, which would be a dramatic situation. These elements confirm the research carried out by

Carattini, Heutel and Melkadze (2021), asserting the need to combine it with other types of

policy.

Finally, this paper paves the way for a great deal of future research. The model presented relies

on the ability to differentiate between a polluting and a non-polluting investment, which is still a very

thin area of research. In addition, we will be able to determine the optimal values of θc and θd to

maximise the well-being of our economy.
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11 Appendix

11.1 Household first order conditions

We notice that the optimization program of households has a recursive form, we can thus form a

dynamic lagrangian as follows:

∀t LH
t (CM

t , Lt, St, Dt) = βt · E
[
ln(CM

t )− χ ln(Lt) +
√
St

]
+ λt

[
wt · Lt +RtDt−1 − CM

t −Dt

]
Where λt represents the Lagrange multiplier and Et the expectation operator. We then solve the

first-order partial derivatives of the above equation with regard to consumption, labor, deposits, and

the Lagrange multiplier. We can get the four following First Order Conditions (FOC): Let
∂LH

t

∂CM
t

= 0,

one can obtain the FOC with regard to households consumption:

1. Let
∂LH

t

∂CM
t

= 0, one can obtain the FOC with regard to households consumption:

λt = βt · 1

CM
t

(1)

2. Let
∂LH

t

∂Lt
= 0, one can obtain the FOC with regard to labor:

0 = −βt · χ · 1

Lt
+ λt · wt (2)

3. Let
∂LH

t

∂Dt
= 0, one can obtain the FOC with regard to deposits:

Rd
t+1 =

λt

λt+1
(3)

4. Let
∂LH

t

∂ρt
= 0, one can obtain the budget constraint:

wt · Lt +Rt ·Dt−1 = CM
t +Dt (4)

Combining (1) and (2), we get the labor equation:

wt = χ · C
M
t

Lt
(5)

Furthermore, (3) and (1) allow us to write the Euler Equation:

1 =
CM

t

CM
t+1

·Rt+1 · β (6)
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11.2 Entrepreneurs first order conditions

We notice that the optimization program of entrepreneurs has a recursive form, we can thus form a

dynamic Lagrangian as follows:

∀t LE
t (C

E
t , Bt, St,K

c
t ,K

d
t ) = γt[ln(CE

t ) +
√
St]

+ Pt[R
c
tK

c
t +Rd

tK
d
t +Bt −RtBt−1 − CE

t − ict − idt ]

+ µc
t [q · ict + (1− δ)Kc

t −Kc
t+1]

+ µd
t [i

d
t + (1− δ)Kd

t −Kd
t+1]

+ ηt[θcR
C
t K

c
t + θdR

d
tK

d
t −Rt+1Bt]

Where Pt, µ
c
t , µ

d
t , and ηt represent the Lagrange multipliers. Notice that at equilibrium, the borrowing

constraint is saturated. We then solve the first-order partial derivatives of the above equation with

regard to consumption, both types of investment (c and d), borrowing, and the Lagrange multiplier.

We can get the following First Order Conditions (FOC) :

1. Let
∂LE

t

∂CE
t

= 0 one can obtain the FOC with regard to entrepreneurs’ consumption:

Pt = γt · 1

CE
t

(7)

2. Let
∂LE

t

∂ict
= 0 one can obtain the FOC with regard to investment in non-polluting capitals:

Pt = q · µc
t (8)

3. Let
∂LE

t

∂idt
= 0 one can obtain the FOC with regard to investment in polluting capitals:

Pt = µd
t (9)

4. Let
∂LE

t

∂Bt
= 0 one can obtain the FOC with regard to borrowing:

Pt −Rt+1 · Pt+1 − ηt+1 ·Rt+1 = 0 (10)

5. Let
∂LE

t

∂Pt
= 0 one can obtain the FOC with regard to the first Lagrange multiplier, giving the
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budget constraint of entrepreneurs:

CE
t + ict + idt +RtBt−1 = RC

t K
c
t +Rd

tK
d
t +Bt (11)

6. Let
∂LE

t

∂µc
t
= 0 one can obtain the FOC with regard to the second Lagrange multiplier, giving the

law of motion of non-polluting capital:

q · ict + (1− δ)Kc
t = Kc

t+1 (12)

7. Let
∂LE

t

∂µd
t
= 0 one can obtain the FOC with regard to the third Lagrange multiplier, giving the

law of motion of polluting capital:

idt + (1− δ)Kd
t = Kd

t+1 (13)

8. Let
∂LE

t

∂ηt
= 0 one can obtain the FOC with regard to the last Lagrange multiplier, giving the

saturated borrowing constraint:

θcR
C
t+1K

c
t+1 + θdR

d
t+1K

d
t+1 = Rt+1Bt (14)

9. Let
∂LE

t

∂Kc
t+1

= 0 one can obtain the FOC with regard to the stock of clean capital at t+ 1:

Pt+1R
c
t+1 − µc

t + µc
t+1(1− δ) + θcηt+1R

c
t+1 = 0 (15)

10. Let
∂LE

t

∂Kd
t+1

= 0 one can obtain the FOC with regard to the stock of polluting capital at t+ 1:

−µd
t +Rd

t+1Pt+1 + µd
t+1(1− δ) + θdηt+1R

d
t+1 = 0 (16)

Knowing (8), (9), and by isolating ηt+1 in (10), we can then rewrite (15), giving us the first Euler

Equation :

γ =
CE

t+1

CE
t

·
1/q + θc

Rc
t+1

Rt+1

Rc
t+1 + (1− δ) 1q − θcRc

t+1

(17)

Following the same reasoning, we can rewrite (16), giving us the second Euler Equation:

γ =
CE

t+1

CE
t

·
1 + θd

Rd
t+1

Rt+1

Rd
t+1 + (1− δ)− θdRd

t+1

(18)

From these two previous equations, we get the no arbitrage condition between clean and dirty

33



capital, given by:

1/q + θc
Rc

t+1

Rt+1

Rc
t+1 + (1− δ) 1q − θcRc

t+1

=
1 + θd

Rd
t+1

Rt+1

Rd
t+1 + (1− δ)− θdRd

t+1

(19)

Furthermore, the last characteristic equation is given by (11) in which we inject (12) and (13) giving :

CE
t + [Kd

t+1 − (1− δ)Kd
t ] +

[
Kc

t+1 − (1− δ)Kc
t

q

]
+RtBt−1 = Rc

tK
c
t +Rd

tK
d
t +Bt (20)

11.3 Firms first order conditions

On the firm side, we can set the profit maximization problem as follows :

∀t LF
t (Lt,K

c
t ,K

d
t ) = (AtLt)

1−α
(
Kc

t
σ +Kd

t
σ
)α/σ − wtLt −RC

t K
c
t −Rd

tK
d
t (1)

We then solve the first-order partial derivatives of the above equation with regard to labor and both

types of capital stock (c and d).

We can now get the following First Order Conditions (FOC):

1. Let
∂LF

t

∂Lt
= 0 one can obtain the FOC with regard to labor:

wt = (1− α)
Yt

Lt
(21)

2. Let
∂LF

t

∂Kd
t
= 0 one can obtain the FOC with regard to the stock of polluting capital:

Rd
t = α(1− κt)

Yt

Kd
t

(23)

3. Let
∂LF

t

∂Kc
t
= 0 one can obtain the FOC with regard to the stock of no polluting capital:

Rc
t = ακt

Yt

Kc
t

(24)

with

Yt = (AtLt)
1−α ·

(
(Kc

t )
σ + (Kd

t )
σ
)α

σ

and

κt =
Kc

t
σ

Kc
t
σ +Kd

t
σ

(22)
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11.4 Study of the local dynamics

We assume the following relationships :

Ω1 = −σκ∗ − α(1− κ∗) + α (42)

Ω2 = −σκ∗ − α(1− κ∗) + 1 (43)

Ω3 =
(
1− α

σ

)
σ(1− κ∗) + α− 1 (44)

Ω4 =
(
1− α

σ

)
σ(1− κ∗) (45)

Ω5 =
θcR

c∗

R∗/q − θcRc∗ − θdR
d∗

R∗ − θdRd∗ (46)

Ω6 =

(
1− θd

Rd∗(1− θd) + 1− δ
+

θd
R∗ − θdRd∗

)
Rd∗

((
−κ∗

1− κ∗ − α

σ

)
σ(1− κ∗) + α

)
−

(
1− θc

Rc∗(1− θc) +
1−δ
q

+
θc

R∗ − θcRc∗

)
Rc∗

((
1− α

σ

)
σ(1− κ∗)

) (47)

Ω7 =

(
1− θd

Rd∗(1− θd) + 1− δ
+

θd
R∗ − θdRd∗

)
Rd∗

((
−κ∗

1− κ∗ − α

σ

)
σ(1− κ∗) + 1

)
−

(
1− θc

Rc∗(1− θc) +
1−δ
q

+
θc

R∗ − θcRc∗

)
Rc∗

((
1− α

σ

)
σ(1− κ∗)

) (48)

Ω8 =

(
1

q
− θc

Rc∗

R∗

)
k̃c∗ (49)

Ω9 =

(
1− θd

Rd∗

R∗

)
k̃d∗ (50)

Ω10 = k̃c∗θc
Rc∗

R∗ (51)

Ω11 = k̃d∗θd
Rd∗

R∗ (52)

Ω12 =
(
k̃c∗θcR

c∗ + k̃d∗θdR
d∗
) 1

R∗ (53)
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Ω13 = k̃c∗
(
Rc∗(1− θc) +

1− δ

q

)
(54)

Ω14 = k̃d∗
(
Rd∗(1− θd) + 1− δ

)
(55)

Ω15 = k̃c∗Rc∗(1− θc) (56)

Ω16 = k̃d∗Rd∗(1− θd) (57)

Ω17 = θc
Rc∗

R∗ k̃c∗ + θd
Rd∗

R∗ k̃d∗ (58)

Ω18 = θc
Rc∗

R∗ k̃c∗ (59)

Ω19 = θd
Rd∗

R∗ k̃d∗ (60)

Ω20 =
(
k̃c∗θcR

c∗ − k̃d∗θdR
d∗
) 1

R∗ (61)

Ω21 =
(1 + λ)

γ

(
Ω8 − Ω10Ω3 − Ω11Ω1 +

Ω12

Ω5
Ω6

)
(62)

Ω22 =
(1 + λ)

γ

(
Ω9 +Ω10Ω4 +Ω11Ω2 −

Ω12

Ω5
Ω7

)
(63)

Ω23 = Ω13 +Ω15Ω3 +Ω16Ω1 (64)

Ω24 = Ω14 − Ω15Ω4 − Ω16Ω2 (65)

Ω25 =
Ω18

Ω17
(1 + Ω3) +

Ω19

Ω17
Ω1 −

Ω20

Ω17

Ω6

Ω5
(66)

Ω26 =
Ω19

Ω17
(1 + Ω2) +

Ω18

Ω17
Ω4 −

Ω20

Ω17

Ω7

Ω5
(67)
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Ω27 =
Ω18

Ω17
(1 + Ω3) +

Ω19

Ω17
Ω1 −

Ω20

Ω17

Ω6

Ω5
+

Ω6

Ω5
(68)

Ω28 =
Ω19

Ω17
(1 + Ω2) +

Ω18

Ω17
Ω4 −

Ω20

Ω17

Ω7

Ω5
+

Ω7

Ω5
(69)

11.5 Python code showing the impact of an increase of θc on the steady

state

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.optimize import fsolve

4

5 # Definition du modele

6 def model_politique_macroprudentielle(x, beta , alpha , gamma , delta ,

theta_c , theta_d , sigma , lambd , q):

7 d, R, R_c , R_d , kappa , k_c , k_d = x

8 F = [

9 -d + (beta / (1 + lambd)) * R * d,

10 -R_c + alpha * kappa **(1 - alpha / sigma) * k_c **( alpha - 1),

11 -R_d + (1 - kappa) / kappa * k_c / k_d * R_c ,

12 -((1 + lambd) / gamma) * (k_c * (1 / q - theta_c * R_c / R) +

k_d * (1 - theta_d * R_d / R)) + (k_c * (R_c * (1 - theta_c)

+ (1 - delta) / q) + k_d * (R_d * (1 - theta_d) + 1 - delta))

,

13 -d + (1 + lambd) * (theta_c * (R_c / R) * k_c + theta_d * (R_d /

R) * k_d),

14 -kappa + (k_c** sigma) / (k_c**sigma + k_d**sigma),

15 -(R_d * (1 - theta_d) + 1 - delta) / (1 - theta_d * (R_d / R)) +

(R_c * (1 - theta_c) + (1 - delta) / q) / (1 / q - theta_c *

(R_c / R))

16 ]

17 return F

18

19 # Parametres initiaux

20 beta = 0.99

21 alpha = 0.4

22 gamma = 0.8
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23 delta = 0.05

24 theta_d = 0.1

25 sigma = 0.33

26 lambd = 0.016

27 q = 0.5

28

29 # Plage de valeurs de theta_c

30 theta_c_values = np.linspace (0.2, 0.8, num =30)

31

32 variable_values_all = []

33

34 for theta_c in theta_c_values:

35 equilibrium_values = fsolve(model_politique_macroprudentielle , [1,

1, 0.14, 0.3, 0.4, 3, 1], args=(beta , alpha , gamma , delta ,

theta_c , theta_d , sigma , lambd , q))

36 variable_values_all.append(equilibrium_values)

37

38 variable_values_all = np.array(variable_values_all)

39

40 # Afficher l’evolution des variables d, kappa , k_c et k_d pour chaque

valeur de theta_c

41 variables = [’d’, ’kappa’, ’k_c’, ’k_d’]

42 fig , ax = plt.subplots(figsize =(10, 2.5))

43

44 ax.plot(theta_c_values , variable_values_all [:, 0], label=’d’)

45 ax.set_ylabel(’d’)

46 ax.legend ()

47 ax.grid()

48

49 ax.set_xlabel(’Value of theta_c ’)

50 plt.tight_layout ()

51 plt.show()

52

53 variables = [’kappa’, ’k_c’, ’k_d’]

54 fig , axes = plt.subplots(len(variables), 1, figsize =(10, 6), sharex=True

)

55

56 for i, ax in enumerate(axes):
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57 ax.plot(theta_c_values , variable_values_all [:, 4 + i], label=

variables[i])

58 ax.set_ylabel(variables[i])

59 ax.legend ()

60 ax.grid()

61

62 axes [-1]. set_xlabel(’Value of theta_c ’)

63 plt.tight_layout ()

64 plt.show()

Listing 1: Python code showing the impact of an increase of θc on the steady state

11.6 Python code showing the impact of an increase of θd on the steady

state

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.optimize import fsolve

4

5 # Definition du modele

6 def model_politique_macroprudentielle(x, beta , alpha , gamma , delta ,

theta_c , theta_d , sigma , lambd , q):

7 d, R, R_c , R_d , kappa , k_c , k_d = x

8 F = [

9 -d + (beta / (1 + lambd)) * R * d,

10 -R_c + alpha * kappa **(1 - alpha / sigma) * k_c **( alpha - 1),

11 -R_d + (1 - kappa) / kappa * k_c / k_d * R_c ,

12 -((1 + lambd) / gamma) * (k_c * (1 / q - theta_c * R_c / R) +

k_d * (1 - theta_d * R_d / R)) + (k_c * (R_c * (1 - theta_c)

+ (1 - delta) / q) + k_d * (R_d * (1 - theta_d) + 1 - delta))

,

13 -d + (1 + lambd) * (theta_c * (R_c / R) * k_c + theta_d * (R_d /

R) * k_d),

14 -kappa + (k_c** sigma) / (k_c**sigma + k_d**sigma),

15 -(R_d * (1 - theta_d) + 1 - delta) / (1 - theta_d * (R_d / R)) +

(R_c * (1 - theta_c) + (1 - delta) / q) / (1 / q - theta_c *

(R_c / R))

16 ]
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17 return F

18

19 # Parametres initiaux

20 beta = 0.99

21 alpha = 0.4

22 gamma = 0.8

23 delta = 0.05

24 theta_c = 0.85

25 sigma = 0.33

26 lambd = 0.015

27 q = 0.5

28

29 # Plage de valeurs de theta_d

30 theta_d_values = np.linspace (0.2, 0.8, num =30)

31

32 variable_values_all = []

33

34 for theta_d in theta_d_values:

35 equilibrium_values = fsolve(model_politique_macroprudentielle , [1,

1, 0.14, 0.3, 0.4, 3, 1], args=(beta , alpha , gamma , delta ,

theta_c , theta_d , sigma , lambd , q))

36 variable_values_all.append(equilibrium_values)

37

38 variable_values_all = np.array(variable_values_all)

39

40 # Afficher l’evolution des variables d, kappa , k_c et k_d pour chaque

valeur de theta_d

41 variables = [’d’, ’kappa’, ’k_c’, ’k_d’]

42 fig , ax = plt.subplots(figsize =(10, 2.5))

43

44 ax.plot(theta_d_values , variable_values_all [:, 0], label=’d’)

45 ax.set_ylabel(’d’)

46 ax.legend ()

47 ax.grid()

48

49 ax.set_xlabel(’Value of theta_d ’)

50 plt.tight_layout ()

51 plt.show()
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52

53 variables = [’kappa’, ’k_c’, ’k_d’]

54 fig , axes = plt.subplots(len(variables), 1, figsize =(10, 6), sharex=True

)

55

56 for i, ax in enumerate(axes):

57 ax.plot(theta_d_values , variable_values_all [:, 4 + i], label=

variables[i])

58 ax.set_ylabel(variables[i])

59 ax.legend ()

60 ax.grid()

61

62 axes [-1]. set_xlabel(’Value of theta_d ’)

63 plt.tight_layout ()

64 plt.show()

Listing 2: Python code showing the impact of an increase of θd on the steady state

11.7 Unsaturated credit constraint case

We notice that the optimization program of entrepreneurs has a recursive form, we can thus form a

dynamic Lagrangian as follows:

∀t LE
t (C

E
t , Bt, St,K

c
t ,K

d
t ) = γt[ln(CE

t ) +
√
St]

+ Pt[R
c
tK

c
t +Rd

tK
d
t +Bt −RtBt−1 − CE

t − ict − idt ]

+ µc
t [q · ict + (1− δ)Kc

t −Kc
t+1]

+ µd
t [i

d
t + (1− δ)Kd

t −Kd
t+1]

+ ηt[θcR
C
t K

c
t + θdR

d
tK

d
t −Rt+1Bt]

where ηt = 0 because the credit constraint is not saturated.

This new model therefore has the following first-order conditions :

Dt = β ·Rt ·Dt−1 (74)
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CH
t =

(1− β)

(1− χ)
·Rt ·Dt−1 (75)

κt =
(Kc

t )
σ

(Kc
t )

σ + (Kd
t )

σ
(76)

wt = (1− α) · Yt

Lt
(77)

Rd
t = α(1− κt) ·

Yt

Kd
t

(78)

Rc
t = α · κt ·

Yt

Kc
t

(79)

1

Rd
t+1 + 1− δ

=
1/q

Rc
t+1 + (1− δ)/q

(80)

CE
t +Kd

t+1 − (1− δ)Kd
t +

Kc
t+1 − (1− δ)Kc

t

q
= Rc

tK
c
t +Rd

tK
d
t +Dt −

Dt

β
(81)

Yt = CE
t + CH

t +Kd
t+1 − (1− δ)Kd

t +
Kc

t+1 − (1− δ)Kc
t

q
(82)

Furthermore, corollary 3 tells us that :

Rt+1 = Rd
t+1 + 1− δ = Rc

t+1 +
1 + δ

q
(73)

We can therefore take equations (73), (74), (77), (78) and (79), deflate them in a similar way to the

model with the introduction of macroprudential policy, and implement them on dynare.

11.8 Python code to obtain eigenvalue number 1 as a function of q

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def VP_val_1(q=6):

5 beta = 0.99
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6 alpha = 0.4

7 gamma = 0.8

8 delta = 0.05

9 theta_c = 0.85

10 theta_d = 0.1

11 sigma = 0.33

12 lambd = 0.015

13

14 R_ss = (1 + lambd) / beta

15 R_c_ss = (1 / q * ((1 + lambd) / gamma - (1 - delta))) / (1 -

theta_c + theta_c * beta / gamma)

16 R_d_ss = ((1 + lambd) / gamma - (1 - delta)) / (1 - theta_d +

theta_d * beta / gamma)

17 omega_ss = (q * (1 - theta_c + theta_c * beta / gamma)) / (1 -

theta_d + theta_d * beta / gamma)

18 kappa_ss = 1 / (1 + omega_ss ** (sigma / (sigma - 1)))

19 k_c_ss = alpha / ((1 + omega_ss ** (sigma / (sigma - 1))) ** ((sigma

- alpha) / sigma)) * (omega_ss * (1 - theta_d + theta_d * beta /

gamma)) / ((1 + lambd) / gamma - (1 - delta))

20 k_d_ss = ((1 - kappa_ss) / kappa_ss * R_c_ss * k_c_ss) / (R_d_ss)

21 omega_1 = -sigma * kappa_ss - alpha * (1 - kappa_ss) + alpha

22 omega_2 = -sigma * kappa_ss - alpha * (1 - kappa_ss) + 1

23 omega_3 = (1 - alpha / sigma) * sigma * (1 - kappa_ss) + alpha - 1

24 omega_4 = (1 - alpha / sigma) * sigma * (1 - kappa_ss)

25 omega_5 = (theta_c * R_c_ss) / (R_ss / q - theta_c * R_c_ss) - (

theta_d * R_d_ss) / (R_ss - theta_d * R_d_ss)

26 omega_6 = ((1 - theta_d) / (R_d_ss * (1 - theta_d) + 1 - delta) +

theta_d / (R_ss - theta_d * R_d_ss)) * R_d_ss * ((-kappa_ss / (1

- kappa_ss) - alpha / sigma) * sigma * (1 - kappa_ss) + alpha) -

((1 - theta_c) / (R_c_ss * (1 - theta_c) + (1 - delta) / q) +

theta_c / (R_ss - theta_c * R_c_ss)) * R_c_ss * ((1 - alpha /

sigma) * sigma * (1 - kappa_ss) + alpha - 1)

27 omega_7 = ((1 - theta_d) / (R_d_ss * (1 - theta_d) + 1 - delta) +

theta_d / (R_ss - theta_d * R_d_ss)) * R_d_ss * ((-kappa_ss / (1

- kappa_ss) - alpha / sigma) * sigma * (1 - kappa_ss) + 1) - ((1

- theta_c) / (R_c_ss * (1 - theta_c) + (1 - delta) / q) + theta_c

/ (R_ss - theta_c * R_c_ss)) * R_c_ss * ((1 - alpha / sigma) *

sigma * (1 - kappa_ss))
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28 omega_8 = (1 / q - theta_c * R_c_ss / R_ss) * k_c_ss

29 omega_9 = (1 - theta_d * R_d_ss / R_ss) * k_d_ss

30 omega_10 = R_c_ss * (k_c_ss * theta_c * 1 / R_ss)

31 omega_11 = R_d_ss * (k_d_ss * theta_d * 1 / R_ss)

32 omega_12 = 1 / R_ss * (k_c_ss * theta_c * R_c_ss + k_d_ss * theta_d

* R_d_ss)

33 omega_13 = k_c_ss * (R_c_ss * (1 - theta_c) + (1 - delta) / q)

34 omega_14 = k_d_ss * (R_d_ss * (1 - theta_d) + (1 - delta))

35 omega_15 = k_c_ss * (1 - theta_c) * R_c_ss

36 omega_16 = k_d_ss * (1 - theta_d) * R_d_ss

37 omega_17 = theta_c * R_c_ss / R_ss * k_c_ss + theta_d * R_d_ss /

R_ss * k_d_ss

38 omega_18 = theta_c * R_c_ss / R_ss * k_c_ss

39 omega_19 = theta_d * R_d_ss / R_ss * k_d_ss

40 omega_20 = 1 / R_ss * (theta_c * R_c_ss * k_c_ss - theta_d * R_d_ss

* k_d_ss)

41 omega_21 = (1 + lambd) / gamma * (omega_8 - omega_10 * omega_3 -

omega_11 * omega_1 + omega_12 / omega_5 * omega_6)

42 omega_22 = (1 + lambd) / gamma * (omega_9 + omega_10 * omega_4 +

omega_11 * omega_2 - omega_12 / omega_5 * omega_7)

43 omega_23 = omega_13 + omega_15 * omega_3 + omega_16 * omega_1

44 omega_24 = omega_14 - omega_15 * omega_4 - omega_16 * omega_2

45 omega_25 = omega_18 / omega_17 * (1 + omega_3) + omega_19 / omega_17

* omega_1 - omega_20 / omega_17 * omega_6 / omega_5

46 omega_26 = omega_19 / omega_17 * (1 + omega_2) + omega_18 / omega_17

* omega_4 - omega_20 / omega_17 * omega_7 / omega_5

47 omega_27 = omega_18 / omega_17 * (1 + omega_3) + omega_19 / omega_17

* omega_1 - omega_20 / omega_17 * omega_6 / omega_5 + omega_6 /

omega_5

48 omega_28 = omega_19 / omega_17 * (1 + omega_2) + omega_18 / omega_17

* omega_4 - omega_20 / omega_17 * omega_7 / omega_5 + omega_7 /

omega_5

49 J_A = (-omega_26 * omega_23 - omega_22 * omega_27) / (-omega_26 *

omega_21 - omega_25 * omega_22)

50 J_B = (-omega_26 * omega_24 + omega_22 * omega_28) / (-omega_26 *

omega_21 - omega_25 * omega_22)

51 J_C = (-omega_25 * omega_23 + omega_27 * omega_21) / (-omega_26 *

omega_21 - omega_25 * omega_22)
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52 J_D = (-omega_24 * omega_25 - omega_28 * omega_21) / (-omega_26 *

omega_21 - omega_25 * omega_22)

53 a = 1

54 b = -(J_A + J_D)

55 c = J_A * J_D - J_B * J_C

56 delta = b ** 2 - 4 * a * c

57

58 VP_1 = (-b - delta ** 0.5) / (2 * a)

59 VP_2 = (-b + delta ** 0.5) / (2 * a)

60

61 return VP_1

62

63 q_values = np.linspace (0.01 , 20, 100) # Eviter q = 0 car division par

zero

64

65 # Stocker les valeurs propres pour chaque valeur de q

66 VP1_values = []

67

68 # Calculer les valeurs propres pour chaque q

69 for q in q_values:

70 VP1 = VP_val_1(q) # Appeler la fonction avec la valeur q

71 VP1_values.append(VP1) # Ajouter la valeur retournee a la liste

72

73 # Convertir la liste en array numpy

74 VP1_values = np.array(VP1_values)

75

76 # Tracer les valeurs propres en fonction de q

77 plt.figure(figsize =(16, 10))

78 plt.axhline(y=-1, color=’red’, linestyle=’--’)

79 plt.axhline(y=1, color=’red’, linestyle=’--’)

80 plt.plot(q_values , VP1_values , label=’VP1’)

81 plt.xlabel(’Value of q’)

82 plt.title(’First eigenvalue as a function of q’)

83 plt.legend ()

84 plt.grid(True) # Ajouter la grille

85 plt.show()

86

87 plt.figure(figsize =(16, 10))
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88 plt.axhline(y=-1, color=’red’, linestyle=’--’)

89 plt.axhline(y=1, color=’red’, linestyle=’--’)

90 plt.plot(q_values , VP1_values , label=’VP1’)

91 plt.xlabel(’Value of q’)

92 plt.title(’First eigenvalue as a function of q’)

93 plt.ylim(-2, 2) # Limiter l axe y de -5 a 5

94 plt.xlim(-0.5, 1)

95 plt.legend ()

96 plt.grid(True) # Ajouter la grille

97 plt.show()

Listing 3: Python code to obtain eigenvalue number 1 as a function of q

11.9 Python code to obtain eigenvalue number 2 as a function of q

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def VP_val_2(q=6):

5 beta = 0.99

6 alpha = 0.4

7 gamma = 0.8

8 delta = 0.05

9 theta_c = 0.85

10 theta_d = 0.1

11 sigma = 0.33

12 lambd = 0.015

13

14 R_ss = (1 + lambd) / beta

15 R_c_ss = (1 / q * ((1 + lambd) / gamma - (1 - delta))) / (1 -

theta_c + theta_c * beta / gamma)

16 R_d_ss = ((1 + lambd) / gamma - (1 - delta)) / (1 - theta_d +

theta_d * beta / gamma)

17 omega_ss = (q * (1 - theta_c + theta_c * beta / gamma)) / (1 -

theta_d + theta_d * beta / gamma)

18 kappa_ss = 1 / (1 + omega_ss ** (sigma / (sigma - 1)))

19 k_c_ss = alpha / ((1 + omega_ss ** (sigma / (sigma - 1))) ** ((sigma

- alpha) / sigma)) * (omega_ss * (1 - theta_d + theta_d * beta /
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gamma)) / ((1 + lambd) / gamma - (1 - delta))

20 k_d_ss = ((1 - kappa_ss) / kappa_ss * R_c_ss * k_c_ss) / (R_d_ss)

21 omega_1 = -sigma * kappa_ss - alpha * (1 - kappa_ss) + alpha

22 omega_2 = -sigma * kappa_ss - alpha * (1 - kappa_ss) + 1

23 omega_3 = (1 - alpha / sigma) * sigma * (1 - kappa_ss) + alpha - 1

24 omega_4 = (1 - alpha / sigma) * sigma * (1 - kappa_ss)

25 omega_5 = (theta_c * R_c_ss) / (R_ss / q - theta_c * R_c_ss) - (

theta_d * R_d_ss) / (R_ss - theta_d * R_d_ss)

26 omega_6 = ((1 - theta_d) / (R_d_ss * (1 - theta_d) + 1 - delta) +

theta_d / (R_ss - theta_d * R_d_ss)) * R_d_ss * ((-kappa_ss / (1

- kappa_ss) - alpha / sigma) * sigma * (1 - kappa_ss) + alpha) -

((1 - theta_c) / (R_c_ss * (1 - theta_c) + (1 - delta) / q) +

theta_c / (R_ss - theta_c * R_c_ss)) * R_c_ss * ((1 - alpha /

sigma) * sigma * (1 - kappa_ss) + alpha - 1)

27 omega_7 = ((1 - theta_d) / (R_d_ss * (1 - theta_d) + 1 - delta) +

theta_d / (R_ss - theta_d * R_d_ss)) * R_d_ss * ((-kappa_ss / (1

- kappa_ss) - alpha / sigma) * sigma * (1 - kappa_ss) + 1) - ((1

- theta_c) / (R_c_ss * (1 - theta_c) + (1 - delta) / q) + theta_c

/ (R_ss - theta_c * R_c_ss)) * R_c_ss * ((1 - alpha / sigma) *

sigma * (1 - kappa_ss))

28 omega_8 = (1 / q - theta_c * R_c_ss / R_ss) * k_c_ss

29 omega_9 = (1 - theta_d * R_d_ss / R_ss) * k_d_ss

30 omega_10 = R_c_ss * (k_c_ss * theta_c * 1 / R_ss)

31 omega_11 = R_d_ss * (k_d_ss * theta_d * 1 / R_ss)

32 omega_12 = 1 / R_ss * (k_c_ss * theta_c * R_c_ss + k_d_ss * theta_d

* R_d_ss)

33 omega_13 = k_c_ss * (R_c_ss * (1 - theta_c) + (1 - delta) / q)

34 omega_14 = k_d_ss * (R_d_ss * (1 - theta_d) + (1 - delta))

35 omega_15 = k_c_ss * (1 - theta_c) * R_c_ss

36 omega_16 = k_d_ss * (1 - theta_d) * R_d_ss

37 omega_17 = theta_c * R_c_ss / R_ss * k_c_ss + theta_d * R_d_ss /

R_ss * k_d_ss

38 omega_18 = theta_c * R_c_ss / R_ss * k_c_ss

39 omega_19 = theta_d * R_d_ss / R_ss * k_d_ss

40 omega_20 = 1 / R_ss * (theta_c * R_c_ss * k_c_ss - theta_d * R_d_ss

* k_d_ss)

41 omega_21 = (1 + lambd) / gamma * (omega_8 - omega_10 * omega_3 -

omega_11 * omega_1 + omega_12 / omega_5 * omega_6)
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42 omega_22 = (1 + lambd) / gamma * (omega_9 + omega_10 * omega_4 +

omega_11 * omega_2 - omega_12 / omega_5 * omega_7)

43 omega_23 = omega_13 + omega_15 * omega_3 + omega_16 * omega_1

44 omega_24 = omega_14 - omega_15 * omega_4 - omega_16 * omega_2

45 omega_25 = omega_18 / omega_17 * (1 + omega_3) + omega_19 / omega_17

* omega_1 - omega_20 / omega_17 * omega_6 / omega_5

46 omega_26 = omega_19 / omega_17 * (1 + omega_2) + omega_18 / omega_17

* omega_4 - omega_20 / omega_17 * omega_7 / omega_5

47 omega_27 = omega_18 / omega_17 * (1 + omega_3) + omega_19 / omega_17

* omega_1 - omega_20 / omega_17 * omega_6 / omega_5 + omega_6 /

omega_5

48 omega_28 = omega_19 / omega_17 * (1 + omega_2) + omega_18 / omega_17

* omega_4 - omega_20 / omega_17 * omega_7 / omega_5 + omega_7 /

omega_5

49 J_A = (-omega_26 * omega_23 - omega_22 * omega_27) / (-omega_26 *

omega_21 - omega_25 * omega_22)

50 J_B = (-omega_26 * omega_24 + omega_22 * omega_28) / (-omega_26 *

omega_21 - omega_25 * omega_22)

51 J_C = (-omega_25 * omega_23 + omega_27 * omega_21) / (-omega_26 *

omega_21 - omega_25 * omega_22)

52 J_D = (-omega_24 * omega_25 - omega_28 * omega_21) / (-omega_26 *

omega_21 - omega_25 * omega_22)

53 a = 1

54 b = -(J_A + J_D)

55 c = J_A * J_D - J_B * J_C

56 delta = b ** 2 - 4 * a * c

57

58 VP_1 = (-b - delta ** 0.5) / (2 * a)

59 VP_2 = (-b + delta ** 0.5) / (2 * a)

60

61 return VP_2

62

63 q_values = np.linspace (0.01 , 10, 100) # Eviter q = 0 car division par

zero

64

65 # Stocker les valeurs propres pour chaque valeur de q

66 VP2_values = []

67
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68 # Calculer les valeurs propres pour chaque q

69 for q in q_values:

70 VP2 = VP_val_2(q) # Appeler la fonction avec la valeur q

71 VP2_values.append(VP2) # Ajouter la valeur retournee a la liste

72

73 # Convertir la liste en array numpy

74 VP2_values = np.array(VP2_values)

75

76 # Tracer les valeurs propres en fonction de q

77 plt.figure(figsize =(16, 10))

78 plt.axhline(y=-1, color=’red’, linestyle=’--’)

79 plt.axhline(y=1, color=’red’, linestyle=’--’)

80 plt.plot(q_values , VP2_values , label=’VP2’)

81 plt.xlabel(’Value of q’)

82 plt.title(’Second eigenvalue as a function of q’)

83 plt.legend ()

84 plt.grid(True) # Ajouter la grille

85 plt.show()

Listing 4: Python code to obtain eigenvalue number 2 as a function of q

11.10 Python code showing the environmental disaster

1 import pandas as pd

2 import matplotlib.pyplot as plt

3

4 def croissance_capital_et_qualite_environnementale(nb_periodes =150,

delta =0.05 , lambd =0.04 , zeta =0.17):

5 """

6 Calcule la croissance du capital polluant et la qualite de l’

environnement.

7

8 Args:

9 nb_periodes (int): Nombre de periodes a etudier

10 delta (float): Taux de depreciation du capital

11 lambd (float): Taux de regeneration du stock environnemental

12 zeta (float): Taux de depreciation du stock environnemental du a

la pollution provenant du stock de capital polluant
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13

14 Returns:

15 DataFrame: Les valeurs du capital polluant et de la qualite de l

’environnement pour chaque periode

16 """

17 K_0_d = 15.1162

18 S_0 = 100

19

20 K_t_2 = pd.DataFrame ({’K_t_d’: [K_0_d]}, index =[0])

21 S_t = pd.DataFrame ({’S_t’: [S_0]}, index =[0])

22 X_t = pd.DataFrame ({’X_t’: [0]}, index =[0]) # Initialisation de l’

axe des abscisses

23

24 for t in range(1, nb_periodes + 1):

25 K_0_d = K_0_d * 1.015 # Croissance de 1.5%

26 K_t_2.loc[t] = K_0_d

27

28 if S_0 > 0:

29 S_0 = S_0 * (1 + lambd) - zeta * K_0_d

30 if S_0 < 0:

31 S_0 = 0 # Assure que S_0 ne devient pas negatif

32 S_t.loc[t] = S_0

33

34 X_t.loc[t] = 0 # Valeurs constantes pour l’axe des abscisses

35

36 # Affichage des graphiques

37 plt.figure(figsize =(15, 8))

38 plt.plot(X_t , label=’Abscissa axis’, color=’red’, linestyle=’--’)

39 plt.plot(K_t_2 , label=’$K_{t\_d}$’, color=’blue’)

40 plt.plot(S_t , label=’$S_{t}$’, color=’green ’)

41 plt.xlabel(’Periods ’)

42 plt.title(’Growth in polluting capital and environmental quality ’)

43 plt.legend ()

44 plt.show()

45

46

47 return pd.concat ([K_t_2 , S_t], axis =1)

48
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49 # Appel de la fonction pour afficher les resultats

50 croissance_capital_et_qualite_environnementale ()

Listing 5: Python code : Growth in polluting capital and effect on environmental quality

51


