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Abstract

Regulators are imposing increasingly demanding requirements on banks and insurance
companies for the monitoring of their key risk parameters. For instance, the Fundamen-
tal Review of The Trading Book (FRTB) under the internal model approach (IMA), now
requires the calculation of expected shortfall (ES) and stressed ES with multiple liquidity
horizons for each risk category, compared to a single liquidity horizon and calculations of
value at risk (VaR) and stressed VaR under Basel III.
These requirements increase by more than tenfold the computational requirements to as-
sess market risk capital and make the management of portfolios with highly complex and
structured products a challenging task. Therefore, exploring new approaches adaptable for
high-dimensional problems that challenge Monte Carlo simulations accuracy and outper-
form their computational efficiency becomes a crucial goal for the industry.

In this report, we use neural networks as universal approximators, to replicate a valuation
function (model) on a given parameter space of interest. We first focus on the case of
financial options valuation using the Black-Scholes model and a stochastic volatility model
(Heston). We prove the methodology constructed first on European vanilla options and then
generalize it to more complex and exotic instruments (Asian options, lookback options, etc.).

We then present two approaches to differently calibrate commonly used valuation models,
taking the example of the Black-Scholes and Heston models. These two approaches capitalize
on the trained neural network (deep calibration). Finally, we present various interesting
applications of these approaches, in particular for risk management, and highlight their
computational efficiency compared to traditional simulation methods.

The last two chapters focus on evaluating the validity of the approach deep pricing to the
valuation of annuity variables (VA). These are unit-linked life insurance contracts that offer
several guarantees providing exposure to the financial markets while protecting against mar-
ket downturns. The valuation of these increasingly complex contracts (combining different
guarantees) requires the consideration of all underlying risks (e.g. modeling of surrender be-
havior, longevity risk, market risk, etc.) and involves nested simulation approaches. These
approaches are computationally intensive, hence the appeal of deep pricing methods.

Keywords:
Deep pricing, Deep calibration, Black-Scholes, Heston, Variable Annuities, GMxB



Résumé

Les régulateurs imposent des exigences de plus en plus strictes aux banques et aux com-
pagnies d’assurance pour le suivi de leurs principaux paramètres de risque. Par exemple, la
revue fondamentale du trading book (FRTB) exige désormais dans le cadre de l’approche
par modèle interne, le calcul de l’Expected Shortfall (ES) et de l’ES stressée sur plusieurs
horizons de liquidité pour chaque catégorie de risque. Ce calcul consistait en un calcul
de Value at Risk (VaR) et de VaR stressée sur un seul horizon de liquidité sous Bâle III.
Ces exigences multiplient par plus de dix les besoins de calcul pour évaluer le capital ré-
glementaire de risque de marché et complexifient la gestion des portefeuilles contenant des
produits structurés. Par conséquent, l’exploration de nouvelles approches plus efficaces que
les simulations de Monte Carlo (MC) devient un objectif crucial pour l’industrie.

Dans ce rapport, nous utilisons les réseaux de neurones comme approximateurs uni-
versels, pour répliquer une fonction de valorisation (modèle) sur un espace de paramètres
d’intérêt donné. Nous nous intéressons d’abord au cas de valorisation des options financières
en utilisant le modèle de Black-Scholes et un modèle de volatilité stochastique (Heston).
Nous prouvons la méthodologie construite d’abord sur des options européennes vanilles et
la généraliserons ensuite à des instruments plus complexes et exotiques (options asiatiques,
options lookback, etc.).

Nous présentons ensuite deux approches pour aborder différemment la calibration des
modèles de valorisation couramment utilisés, en prenant l’exemple des modèles Black- Sc-
holes et Heston. Ces deux approches capitalisent sur le réseau de neurones entraîné (deep
calibration). Nous présentons enfin différentes applications intéressantes de ces approches
en particulier pour la gestion des risques et en soulignons l’intérêt.

Nous consacrons les deux derniers chapitres à l’évaluation d’une potentielle application
du deep pricing à la valorisation des variables annuités (VA). Il s’agit de contrats d’assurance-
vie en unités de compte dont les garanties permettant de bénéficier de l’exposition aux
marchés financiers notamment aux marchés actions, obligataire et immobilier tout en étant
protégé en cas de chute des marchés. La valorisation de ces contrats de plus en plus com-
plexes (combinant différentes garanties) nécessite la prise en compte de l’ensemble des risques
sous-jacents (par exemple la modélisation du comportement de rachat, le risque de longévité,
le risque de marché, etc..) et fait intervenir des approches de simulations dans les simulations
(Nested simulations). Ces approches sont computationnellement intensives, d’où l’intérêt
de l’approche du deep pricing.

Mots-clés: Deep pricing, Deep calibration, Black-scholes, Heston, Variable Annuities,
GMxB
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"Deep learning will transform
every single industry."

Andrew Ng

Introduction

To strengthen the soundness of the financial system, regulators are imposing stricter re-
quirements on both banks and insurance companies in monitoring their key risk metrics.
For instance, the Fundamental Review of The Trading Book (FRTB) under the internal
model approach (IMA), now requires the calculation of expected shortfall (ES) and stressed
ES with multiple liquidity horizons for each risk category, compared to a single liquidity
horizon and calculations of value at risk (VaR) and stressed VaR under Basel III.
These requirements increase by more than tenfold the computational requirements to as-
sess market risk capital and make the management of portfolios with highly complex and
structured products a challenging task. Therefore, exploring new approaches adaptable for
high-dimensional problems that challenge Monte Carlo simulations accuracy and outper-
form their computational efficiency becomes a crucial goal for the industry.

Recently, with the increasing applications of artificial intelligence to financial and insur-
ance problematics, deep neural networks were considered to approximate the pricing and
calibration models as an alternative to the traditional Monte Carlo simulations. In fact,
neural networks offer efficient approximations with no curse of dimensionality. Although
the idea to use neural networks in finance was already researched in the 90s, its applications
only thrived in recent years.

Considerable calculations speedups compared to the Monte Carlo approach can be
achieved by trading off compute time for training with inference time for pricing and thus
induce drastic improvements in both the financial and insurance sectors.
For instance, this technique can make live exotic option pricing a realistic goal and model
calibration an easier task especially for products that require intraday valuations of their
key risk metrics. This can typically be useful for insurers managing and hedging the risks
associated with Variable Annuity (VA) contracts. Although Monte Carlo (MC) simulations
are widely adopted by insurance companies for the valuation of their VA portfolios, the
complex structure of these contracts makes their accurate valuation a computationally de-
manding task.
We will start by introducing the deep pricing paradigm in the case of options pricing using
different models: the Black-Scholes model and a stochastic volatility model ( the Heston
model). We will start with a proof of concept on European vanilla options pricing and gen-
eralize the methodology to more complex exotics (Asian options, lookback options, etc..).

In the deep pricing paradigm, option prices are a function of the derivative parameters
(the initial stock price, the strike, the time to maturity, the dividends, etc) and model
parameters (the stock prices volatility in the case of the Black-Scholes model). Deep pric-
ing aims to learn the solution for all parameters simultaneously. The idea is to train a
neural network on synthetic samples properly generated on a given parameters space of
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interest. After introducing the fundamental notions and principles of deep learning in the
first chapter, we formalize this approach in the second chapter. We assess its accuracy
under the Black-Scholes and Heston models, compare different approaches to generate the
training data, and highlight the importance of this step. We finally show the limits of this
approach and suggest avenues for improvement. At the end of the chapter, we introduce
the unsupervised approach which was briefly tested during the internship but not retained
or developed. Therefore, we do not dwell on it.

Correctly learning the pricing function of a given model is not enough. Being able to
calibrate the model to market data is our crucial next step.
Calibration is one of the most important inverse problems in finance and insurance: we
search for models which explain current price structures in the market. We introduce in the
third chapter two calibration approaches using the previously learned pricing map to find,
given a price/volatility surface, the model parameters that are most likely to generate it.
We compare the two approaches, highlight their limits and the next steps. We conclude this
chapter with a summary of some challenging regulatory requirements that the presented
approaches can help alleviate.

The remaining two chapters introduce Variable Annuity policies, their valuation
framework and recall some of the challenges associated with managing a large portfolio of
them. Finally, we examine the validity of the deep pricing approach on the valuation of
these equity-linked insurance policies.
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1
Neural networks fundamentals

The term "deep learning" is used to describe deep neural networks, in other words, neural
networks with many layers and neurons and hence with a very large number of trainable
parameters. Calibrating a large number of parameters is very challenging in classical sta-
tistical approaches.
Neural networks appeared in the 1943 pioneering work by Warren McCulloch and Walter
Pitts[26] which simulates neurons in the brain, aiming to develop artificial intelligence.
The huge success of deep learning relies on three pillars;

• The application of backpropagation: In fact, neural networks (NNs) support high-
speed training. They are calibrated by minimizing some loss function. Therefore
optimization of this function is required. The bigger the NN, the larger the number
of parameters to fit. For large NNs, taking numerical gradients for optimization is
computationally infeasible. Luckily, we can do so analytically rather than numerically,
using the backpropagation algorithm.

• Advancements in computational capacity and processor speed: Decades ago neural
networks were at best able to handle two layers. Nowadays, networks with as high
as 40 layers are trainable thanks to increases in computational speed due to the de-
velopment of graphics processing units (GPUs). Indeed, the calculations in neural
networks optimization involve high dimensional matrix calculations also known as
tensors calculations, highly optimized on GPUs.

• The availability of big data: This is a significant driver of the success of deep learning
in general, as data is today much more available than it has ever been.

In this chapter, we first introduce the main concepts and definitions used in deep learning
to understand the approaches we will be developing in the following chapters. We first
present the notion of a feedforward neural network. This is the most fundamental network
architecture and it already works quite well.
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1.1 Feedforward neural networks

Neural networks are inspired by the functioning of the neurons in the brain and they tend
to mathematically mimic it, i.e. by taking a wide range of inputs, and passing it on through
layers of neurons to learn "by experience" the mapping of the input to the output.

1.1.1 Architecture

A feedforward neural network (FFNN) is a parametrized function f(·; θ) : RN0 → RNL such
that:

f(·; θ) := F (L) ◦ F (L−1) ◦ ... ◦ F (1) where F (l) :
RNl−1 → RNl

x → σl(W
(l)x+ b(l))

(1.1)

The number of hidden layers is L− 1. The first layer is the input layer while the layer L
is the output layer, σl : R→ R is a non linear function called activation function of layer
l applied component-wise, W (l) ∈MNl,Nl−1

(R) is the layer l weight matrix (an Nl ×Nl−1

matrix) and b(l) ∈ RNl is the layer l bias. The parameter θ ∈ Rq gathers all the weight
matrices and biases.

In other words, this is a nonlinear regression. The neurons connect via their inputs and
outputs in different ways. In the case of a feedforward network, the data moves only in one
direction through a series of layers, each with at least one neuron (node). The first layer
represents the original inputs while the last layer the outputs (see fig. 1.1). The dimensions
of both the input and the output are fixed.

The output layer can be unidimensional meaning that the neural network predicts a unique
value. This is typically the case in our first pricing model where given the model and
option inputs the neural network predicts the option model price. The output can also be
multidimensional, meaning that the neural network returns a set of values. This is typically
the case when predicting a volatility surface or price surface for a set of input parameters.
Layers between the input and output are called hidden layers. Each of these neurons receives
each output from the layer preceding it as input, and passes its own output to every neuron
in the following layer.
A feed forward neural network is therefore defined as follows:

F : Rn0 −→ RnL

x 7→ FL ◦ FL−1 ◦ · · · ◦ F1(x)

Different activation functions mentionned in the literature are already implemented in
different deep learning modules such as Pytorch1 and Tensorflow 2 and can be tested directly,
just to cite a few:

• The logistic function (Sigmoid) defined as h(x) = 1
1+exp(−x)

and generally used to
return a probability for classification purposes or normalised outputs.

1https://pytorch.org
2https://www.tensorflow.org
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• The exponential linear unit function (ELU) defined as h(x) = x, x ≥ 0, else h(x) =
α(exp(x)− 1)

• The Rectified Linear Unit function (ReLU) where h(x) = max(x, 0) The gradient is
therefore zero in the region where x is negative, and the neuron is not active.

• The leaky reLU function, where h(x) = x, x ≥ 0 else h(x) = αx, α > 0. In this case,
the function allows a weak but not zero gradient, when the neuron is not active (α is
small).

Other activation functions were considered. For instance, we used an exponential activation
function for the output layer to ensure that the predicted prices are positive. Moreover,
some activation functions mentioned in the literature[19] but not predefined in the existing
packages were implemented and tested.

Figure 1.1 – Example of feedforward NN with 3 inputs, 2 hidden layers, and one output

1.1.2 Theoretical basis of neural networks

The fundamental theoretical bases for neural networks are the universal approximation
theorems (George Cybenko, Kurt Hornik, et al.)[6][31]. They state that a neural network
with a hidden layer containing a large enough but finite number of neurons can approximate
any function to any given level of accuracy, under certain conditions on the activation
functions.3

1.1.3 More sophisticated architectures

One of the architectures frequently mentioned in the financial literature is recurrent neural
networks (RNNs). This architecture is useful to capture temporal dynamic behaviors due
to the connection between its different layers RNNs. In fact, this architect allows previous
outputs to be used as inputs in the next layers. Therefore they can take into account histor-
ical information and manage variable-length sequences of inputs. It can be typically used
to predict stock market prices.
However, RNNs are not very good at capturing long-term dependencies. This particular
point can be solved by using long short-term memory (LSTM) networks. Such networks

3A sufficient but not necessary condition is the activation functions need to be continuous, bounded, and
non-constant.
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are similar to RNNs but where hidden layer updates are replaced by memory cells. This
difference makes them better at capturing long-term dependencies of the input data.

These architectures do not seem relevant to vanilla options pricing. But can be more
suited for path-dependent option pricing or insurance policies pricing where the input is a
time series. We may note that in our code changing the network architecture is easy and
makes the code modulable for different situations and problems formulations.

1.2 Training phase

We suppose that our samples (x, y) are drawn independently from an unknown distribution
P. We aim to minimize the generalization error which is simply the expected average error
the neural network Nθ would have on samples drawn from this same distribution P through
updates of the parameter set θ :

J(θ) = EP(L(x, y, θ)) (1.2)

L(x, y, θ) needs to reflect the performances of the network and thus the error on each sample
(per sample loss function). As our problem is a regression problem, we use the mean squared
error (MSE) as criterion.
One reasonable choice to solve this problem is to minimize the empirical error. As we
assume that samples are independent and drawn from the same distribution the law of large
numbers guarantees that almost surely the empirical error converges to the generalization
error.

1.2.1 Training, validation and test datasets

We aim to minimize the generalization error over all samples drawn from the distribution
P but in practice, we only have a limited number of observations, two main problems may
arise: overfitting and underfitting.

• Overfitting occurs when the neural network sticks too much to the training samples
and fails to generalize. In practice, the neural network error on a testing dataset (not
used for the training) is much higher than the training error (error on the training
samples).

• Underfitting means the network fails to learn the mapping function accurately. For
example, this can be the case when the generalization error is stuck at a local minimum
much higher than the global one. Such a problem shows when the neural network error
exceeds the average error on a benchmark of models.

Therefore before training our model, we keep (20% of the dataset) as a testing set, while
the remaining dataset is split into a training dataset (90% of the latter) and a validation
dataset. The validation dataset is used to track the loss during the training phase and
compare it to the loss on the training samples. The model is saved only if the loss on the
validation dataset has improved (fig. 1.2).

The test dataset is used in a final step to assess the model’s accuracy. We used mainly
two types of metrics absolute errors (typically the root mean square error (RMSE) and the
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mean absolute error (MAE)) and relative errors (typically the root mean square relative
error (RMSRE) and the Mean absolute relative error (MARE)).

RMSE =

√
1

n

∑
(yi − ŷi)2 RMSRE =

√
1

n

∑
(
yi − ŷi
yi

)2

MAE =
1

n

∑
|yi − ŷi| MARE =

1

n

∑∣∣∣∣yi − ŷiyi

∣∣∣∣

Figure 1.2 – Training phase example

1.2.2 Trainable parameters initialization

During the training, the trainable variables θ (weights and biases) need to be randomly
initialized and then updated to minimize the error.
Different initialization methods have been discussed in the literature, the most popular are:

• Random normal initialization (standard normal variables)

• Random uniform initialization

• Xavier/Glorot normal initialization with variance σ =
√

2
dinput+doutput

,
where dinput, doutput are respectively the dimension of the input and the dimension of
the output.

We used the third method in our implementation. The idea behind this approach is to avoid
vanishing or exploding gradients by imposing that the variance of the output of each layer
is equal to the variance of the inputs.

1.2.3 The learning algorithm: Gradient descent

The goal of the training phase is to find the generalization error’s global minimum. To do
so, we use the gradient descent algorithm.
Gradient descent is a line search method 4 where the step direction is the gradient ∇θJ (θ)
and the step size is lrn, called the learning rate:

4Given a real-valued function f and an iterate xk line search methods define xk+1 as : xk+1 = xk+αkpk,
where pk and αk are respectively the step direction and size.

12



Algorithm 1 Gradient descent algorithm
Require: learning rate (lrn)n≥0 > 0
Initialise θ
repeat

Compute the gradient ∇θL(x, y, θ)
Update θ ← θ − lrn∇θL(θ)

until Convergence

We compute the objective function gradients for each neuron with respect to its weights,
and then the weights are translated in the opposite direction (the direction that should lower
the loss function), by a factor lrn (the learning rate). This is an important hyperparameter
that has to be adjusted to prevent both overshooting and slow convergence. Overshooting
occurs when the learning rate is too large that it overshoots the minimum and the loss can
end up diverging. When the learning rate is too small the neural network will take too long
to converge and may end up stuck in a local minimum.

In practice, the algorithms used for the training, although based on the same general
principle, differ in the definition of the empirical error in particular the amount of data used
to calculate the gradients and hence update the parameters. The most popular versions are:

• (Batch) gradient descent: in this version, the parameters are updated (this is also
known as completing a training "epoch"5) only after calculating the errors for all the
training samples.

∇θL(x, y, θ) =
1

N
∇θ

N∑
i=1

L
(
x(i), y(i), θ

)
where N is the total number of samples.

This approach is memory-hungry as it requires the whole training dataset to be in
memory. Even though this approach may seem more stable, it doesn’t necessarily
yield the best results in terms of convergence (local minimum convergence/ slow con-
vergence). Assuming that the losses are independent and identically distributed (iid),

5An epoch is when the network completes processing the entire training dataset.
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the strong law of large numbers implies that the mean converges to the true value in√
N . Consequently, an x-fold accuracy improvement requires x2 more observations.

Therefore, computing several noisier gradients is preferred to using a single, more
accurate gradient estimate.

• Stochastic gradient descent: the parameters are updated for each training example,
i.e. each observation. On the one hand, this approach allows better tracking of the
loss improvement. On the other hand, it is more computationally intensive.

• Mini-batch gradient descent: Unlike the previous version, the gradient is estimated on
randomly sampled mini-batches of size m 6.

∇θL(x, y, θ) =
1

m
∇θ

m∑
i=1

L
(
x̂(i), ˆy(i), θ

)
Common mini-batch sizes range between 32 and 512. But, there is no clear rule to
define the optimal batch size. It depends on the application, the architecture, and the
dataset. Using small batches may induce noisy gradients resulting in a less regular
error rate decrease and manifesting jumps. Still, this is the most used algorithm since
it’s a compromise between computational efficiency and estimations robustness.

∇wL(x, y, w) =
1

N
∇w

N∑
i=1

L
(
x(i), y(i), w

)
The mini-batch gradient descent algorithm detailed just above is summarised below:

Algorithm 2 mini-batch gradient descent algorithm
Require: learning rate (lrn)n≥0 > 0, dataset of input variables X (of size N), Nbatch, Nepoch

Initialise θ
for each of Nepoch epochs do

Set X ← X
while X is not empty do

Sample Nbatch instances from X under a uniform distribution to get χ
Update X ← X \ χ (equivalent to sampling without replacement)
Simulate a loss function approximation L̂(θ;χ) from χ
Compute the gradient ∇θL̂(θ;χ) (using back-propagation)
Update θ ← θ − lrn∇θL̂(θ;χ)

end while
end for

In our implementation, we used the adam optimizer [23] which is an improved version of
the classical stochastic gradient descent algorithm. The major difference is that instead of
maintaining a single learning rate for all parameters, a learning rate is maintained for each
network parameter and separately adapted as learning unfolds.
In fact, the algorithm computes individual adaptive learning rates for each parameter based

6The sampling procedure for mini-batches is usually uniform without replacement
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on estimates of first (the mean) and second moments (the uncentred variance) of the gradi-
ents as follows:

gt := ∇θL (x, y, θt)

mt+1 := β1mt + (1− β1) gt

vt+1 := β2vt + (1− β2) g2
t

θt+1 := θt − α
mt+1

1− βt+1
1

1√
vt/
(
1− βt+1

2

)
+ ε

where 0 ≤ β1, β2 < 1, ε and α default parameters and as initialization m0 = 0, v0 = 0.
The next step is computing the gradients.

1.2.4 Efficient calculations of gradients: the backpropagation algo-
rithm

The success of neural networks stems from the way these gradients are efficiently computed
using the backpropagation principle.
In fact, the backpropagation algorithm is simply a recursive application of chain rule. Its
effectiveness arises from the fact that a feedforward network is a large nested function, hence
the gradient for each neuron can be calculated via the chain rule.

Backpropagation is an analytical approach that allows the computation of every train-
able parameters’ loss gradients in only one pass, from the output layer back to the input
nodes. On the other hand, numerical methods would need to compute each loss gradient in-
dividually. A computationally intensive task that would have made solving this optimization
problem infeasible.

1.2.5 Hyper-parameters tunning

Training the neural network involves choosing and tunning its parameters (number of layers,
nodes per layer, activation functions, number of training, epochs, batch size, learning rate,
etc..) to prevent both overfitting and underfitting.

Choosing the architecture is challenging. We experimentally found that increasing the
number of hidden layers beyond 2 or 3 layers does not significantly impact the neural
network performance metrics on the test dataset. Consequently, we considered a 2-hidden-
layers network. To choose the other hyperparameters, we used a grid search technique.
This technique considers a pre-defined grid and explors all possible candidates in a brute-
force way. We reported some of the used settings below:

Parameters Options
Activation functions ReLU, ELU, Sigmoid
Dropout rate [0.0, 0.1, 0.2, 0.3]
Batch normalization Yes/no
Number of neurons [20, 40, 50, 100, 120, 150]
Batch size [32, 64, 128, 256, 320, 512, 640, 1024]

Table 1.1 – Grid search settings for hyper-parameters optimization (Case of Black-Scholes
pricing)
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This method is computationally expenseive. Therefore, a common approach is to use
only a subset of the training data (30%) to find the optimal parameters and then train the
tuned neural network on the entire training dataset.[24]
We used a cross-validation method with three folds to compare the trained models. We
describe this algorithm below:

Algorithm 3 k-fold cross validation
-Initialize the set of hyper-parameters.
-Split the training data set into k (we fixed k = 3) subsets.
-Choose one as the validation dataset, and train the remaining datasets.
-Assess the neural network performance by calculating the metric on the validation set.
-Continue the above steps on all subsets.
-The final metric is the average over the k cases.
-Explore the next set of hyper-parameters and rank the models according to the previous
final metric.

More efficient algorithms were discussed in the literature typically the random search
algorithm introduced by Bergstra and Bengio (2012)[3] and the Bayesian hyper-parameter
optimization algorithm[28]. These approaches were not implemented as we focused on build-
ing a coherent methodology more than a perfectly tuned model.
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2
Deep pricing (learning model price function)

In this chapter, we start with a short review of the application of deep pricing in the
literature. We clearly define both the methodology and the data simulation process.
Machine learning techniques have never been used to price products at Mazars Actuariat.
Hence, a preliminary step of the project was a proof of the concept on vanilla products
(call and put options), to see if this approach can be considered for more complex products
(exotics).

2.1 Litterature review

Application of neural networks to option pricing has been researched since 1990, and one of
the founder works was Malliaris and Salchenberger’s [25][22]. They used a neural network
to estimate the close price of S&P 100 options using historical transaction data.
Hutchinson et al.(1994) [18] were the first to attempt to approximate the market option
pricing function for put and call options using neural networks.
This approach is hence model-free. The NN architecture was quite simple with only a
hidden layer and four nodes. Yet, it outperformed the Black-Scholes model in half the test
cases.
Several other works used neural networks as universal approximators to approach model
prices, especially when no closed-form solution is available. In this case, the pricing task is
mainly done using Monte Carlo simulations or numerical schemes. We identified two main
approaches in the literature:

• A supervised approach based on minimizing the difference between the predicted prices
and the target prices (model prices or market prices depending on the application).
We typically use the mean square error (MSE) as a per-sample loss function.

• An unsupervised approach consisting of minimizing a loss function based on a partial
differential equation (PDE) verified by the option prices.

In early work, the option pricing and volatility estimation problems were tackled as su-
pervised problems and the feedforward networks represented quite a suitable tool. Recent
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approaches extended to more complex architectures (up to 4 hidden layers with 400 neurons
each) and rethought the pricing problem as unsupervised, based on the associated PDE.
We should mention that feedforward neural networks are still the reference in the literature.

Unlike the market approaches mentioned before, (see for example, Hutchinson et
al.(1994) [18]; Yao et al. (2000) [31]; Gencay and Qi (2001)[13]) our work will focus
on model pricing. We aim to train the NN to learn a model price function on a given
input space. This choice is justified by the fact that we do not wish to introduce a “ black
box” model to predict market prices. But we rather wish to stick to a model and challenge
the current methods mainly Monte Carlo approaches, for example, by making live exotics
pricing a possible task. Finally, we would like to highlight that the implemented NN can
be recycled to a model-free approach. We tested the model on predicting market prices
(Mid-price) based on a historical training S&P 500 dataset, and the mean relative error
was less than 5%.

2.2 Option Pricing models

In this section, we briefly present two widely used option pricing models, the Black-Scholes
(BS) (1973) [9] model and the Heston stochastic volatility model (1993) [16].
Option pricing models start from assuming a specific diffusion for the stock price, namely a
geometric Brownian motion with constant volatility in the case of the Black-Scholes model
and a strictly positive process driven by a Brownian motion and stochastic volatility for the
Heston model.
Stochastic volatility models were introduced to better approximate the reality. Since in
practice, Black-Scholes’ assumptions are violated. In fact, the stock’s volatility is not con-
stant. The volatility dynamics can be better reproduced by stochastic volatility models for
instance the Heston model.

Black Scholes model

Let (Ω,F ,P) a probability space endowed with the filtration (Ft)t≥0.
In the Black-Scholes model, the asset price (St) follows a geometric Brownian process,
expressed under P as follows:

dSt = µStdt+ σStdWt (2.1)

where W is a P-Brownian motion, σ is a noise factor called volatility, and µ denotes the
drift. Under the risk-neutral measure Q, the drift becomes the interest rate and W is now
a Q-Brownian motion.
For a call option with strike K, current stock price S, annualized volatility σ (the standard
deviation of the return on the stock), time to maturity T , risk-free rate r, and annualized
dividend q the price BScall is given by the following equation:

BScall = Se−qTN (d1)−Ke−rTN (d2) (2.2)

d1 =
ln(S/K) +

(
r + 1

2
σ2
)
T

σ
√
T

d2 = d1 − σ
√
T
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Using a replicating portfolio1 and the Itô’s lemma to the option price, we derive a partial
differential equation (PDE) for European option prices V expressed as a function of time t
and the stock price St with a terminal condition. Typically, V (t = T, S) = (ST −K)+ for a
European call option.

∂V

∂t
+

1

2
σ2S2∂V

2

∂S2
+ (r − q)S∂V

∂S
− rV = 0 (2.3)

Heston model

The Heston model came to correct the restrictive assumption of constant volatility made
by the Black Scholes model. Volatility is rather modeled by a stochastic process namely a
mean-reverting Cox-Ingersoll-Ross (CIR) process.

Let (Ω,F , (Ft)t≥0 .P) a filtred probability space. In the Heston framework, the diffusions of
the stock price and its volatility under the physical probability measure P are given by the
following system of equations:


dSt = µtStdt+

√
vtStdW

s
t (2.4)

dvt = κ (θ − vt) + σ
√
vtdW

v
t (2.5)

d
〈
W (s),W (v)

〉
t

= ρdt (2.6)

St is the underlying price (stock price) with drift µ and instantaneous variance vt. θ is the
long-run variance (the mean level of the variance) to which vt reverts with a speed of κ. θ
controls the overall level of skew. The variance of the variance is given by σ. It controls
the convexity of the smile, the larger σ the more convex the function and hence the more
significant the smile. Finally, v0 denotes the initial variance and W s and W v are two corre-
lated P-Brownian motions with correlation ρ.
The dynamics of S and v under the risk-neutral measure Q are invariant apart from the
drift term µ which becomes r − q, where r is the interest rate and q the annual dividend
yield. In practice, these parameters are calibrated to market quotes of vanilla options for
their liquidity using numerical optimizers and Heston’s semi-analytic formula (2.7).

The Feller condition The volatility process vt is strictly positive if the model’s param-
eters obey the following condition known as the Feller condition:

2κθ > σ2

This condition is crucial for data generation in the pricing and calibration phases.

One of the advantages that made the Heston model particularly popular is the fact that
it provides a semi-analytical formula for European call option prices.

1A replicating portfolio for some asset or cash flows is a portfolio of assets with the same cash flows. A
static replication refers to a portfolio with the same cash flows as the reference asset at any future time,
while dynamic replication, refers to a portfolio that does not have the same cash flows, but rather has the
same "Greeks" as the reference asset. The reference asset and replicating portfolio are only assumed to
behave similarly at a single point.
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The price of a European call option with strike K, maturity T at time t C(t,K, T ) can be
calculated through Fourier transform as follows [8]:

C(t,K, T ) =
1

2
S(t) +

e−r(T−t)

π

∫ ∞
0

Re

[
K−iφf(iφ+ 1)

iφ

]
dφ

−Ke−r(T−t)
(

1

2
+

1

π

∫ ∞
0

Re

[
K−iφf(iφ)

iφ

]
dφ

) (2.7)

where f(iφ) denotes the characteristic function of the Heston model (see Annexe1).

As in the Black Scholes case we can derive a PDE verified by European option prices
[16].

∂V

∂t
+
∂V

∂v
[κ (θ − vt)− ϑ(S, v, t)] + (r− q)S∂V

∂S
+

1

2
σ2v

∂2V

∂v2
+ ρσvS

∂2V

∂S∂v
+

1

2
S2v

∂2V

∂S2
= rV

(2.8)
The ϑ(S, v, t) represents the "price volatility risk" i.e, the risk of asset price movement due
to a change in volatility, usually approximated by the option’s greek Vega.

2.3 Supervised approach

The neural network is trained on a simulated dataset. For a given option type we calculate
model prices for a set of parameters generated randomly on an interval of interest according
to a uniform or normal distribution. Our aim is for the neural network to learn the pricing
function for a given derivative and hence to predict as closely as possible the price for any
random point of the space of interest. We will start with a proof of concept on vanilla
options. After explaining the problems encountered and how we solved them, we test the
approach on exotic options with the example of Asian options.

We highlight that our implementation has no dimensional restrictions and therefore can
be adapted to the pricing of options in high dimensions. Theoretically, the neural network
should yield comparable results. In this section, we focus on learning the price function in
both the Black-Scholes and Heston frameworks. The model can also be used to learn implied
volatility surfaces as we will see in the next chapter along with the model calibration.
Once adequately trained, the neural network should be able to predict instantaneously the
price of a given product for different market settings on a given parameters space of interest.
This approach will be called "fast surface".

2.3.1 Data generation

Data generation is a crucial step of the training. For each financial model we have two types
of inputs: the "observables parameters" and the "model parameters".

Model Observable parameters Model parameters
Black and Scholes (S0, T, r, q) σ
Heston (S0, T, r, q) (κ, θ, σ, ρ, v0)
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Our first approach was randomly choosing the parameters in the space of interest we
defined and calculating the associated prices (closed formula for vanilla options and Monte
Carlo simulations using N =10 000 sample paths with 1000 steps each, for exotics). The
data_generation function can generate Black Scholes and Heston prices for a range of Eu-
ropean options (vanilla options, barrier calls and puts, lookback calls and puts, Asian calls
and puts, etc). Although for some of these exotics a closed-form formula may exist, we
defined a generic pricer based on Monte Carlo simulations.
The range of parameters used to generate BS call option prices is shown in the following
table.

Parameter Range
Stock price (S0) 10- 500
Strike price (K) 7- 650
Maturity in years (T) 0.25- 3
Risk free rate (r) 0%- 3 %
Annualized dividend rate (q) 0%- 3%
Annualized volatility (σ) 5%- 90 %

It should be noted that some generated observations are purely theoretical and do not have
a financial sense (for instance, when the strike lies far from the vicinity of the stock price).
Thus, the data was extremely unbalanced and the observations’ frequency were not
representative of real market prices.
The following figure (fig.2.1) shows three different generated samples according to three
different distributions (uniform, normal (truncated), and lognormal (truncated)).

Figure 2.1 – Randomly generated N samples (N =10 000 according to different distributions
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In the second figure, the marker’s size is proportional to the option’s moneyness (S0/K).
It can be noticed, that the uniform distribution yielded many extremes observations (both
deeply in and out of the money) compared to the normal distribution where the samples
are more concentrated around the money. Yet, the normal distribution seems to shrink
the space of interest and the accuracy of the model dropped in the regions that were not
well-sampled and represented in the training dataset.

Using the uniform distribution, induced the model’s error being highly correlated to the
moneyness of the option. Therefore we built different models by moneyness class to im-
prove the model’s performances. With more hindsight, this seems problematic as it favors
overfitting and undermines the approach’s generality.

Modifying the uniform distribution used to generate the parameters samples to a trun-
cated normal distribution globally improved the model’s accuracy. Finally, fixing the mon-
eyness of the generated samples to a given grid, yielded more financially consistent samples
and drastically improved the model’s performance.
We divided the generated dataset (typically 100 000 samples) into 3 random sets, training,
validation, and test dataset as described in the previous chapter.

Preprocessing

Before passing the prices to the network, we exploited the fact that the pricing function is
homogenous in (S,K):

Call(S,K)/K = Call(S/K, 1) (2.9)

Accordingly, we modified our data by dividing both stock prices and call prices by the strike.
This normalized data was then fed to a two-hidden-layer FFNN to fit the input variables
to the output prices. Prices below 10−3 were also rounded to this threshold. The input
was also normalized before being fed to the neural network. The inverse transformation has
been applied to the last layer’s output.

2.3.2 Numerical results

We used mainly two types of metrics absolute errors (typically the root mean square error
(RMSE) and the mean absolute error (MAE)) and relative errors (typically the root mean
square relative error (RMSRE) and the Mean absolute relative error (MARE)). Report to
the previous chapter for the metrics definitions.

Black-Scholes call prices results: (dataset generated according to a uniform
distribution without a fixed grid for the option’s moneyness)

First, we consider European call options pricing with a simulated dataset according to a
uniform distribution, without a fixed grid for the option’s moneyness.

The first plot shows the train and validation losses per epoch. On the second and third
plots, we respectively represent the training loss and the parameters gradient norm on the
training batches (fig.2.2).
There seems to be no overfitting, as the validation loss is below the training loss. Both
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parameters’ gradient norm and the training loss seem to converge.

Figure 2.2 – Hidden layers= [100,100], batch size= 1024, epochs= 50, batch normalization=
no, learning rate= 10−4

We report the main metrics on both the training and test datasets in the table below
(table 2.1).

While the normalized absolute errors are acceptable with an average error of 6% of the
strike, the relative errors (average errors divided by the price) are too large (60% on both the
training and test datasets). This is mainly due to the unbalanced training dataset, where
out-of-the-money (OTM) options2 are over-represented. In fact, as OTM option prices tend
to be very close to zero, relative errors explode and even tend to be infinite.

Metric MAE RMSE MARE RMRSE
Test dataset 0.064 0.12 45% 60%
Train dataset 0.065 0.13 45% 60%

Table 2.1 – Cross-validation metrics on the training and test datasets (BS call prices, data
generated according to a uniform distribution)

Models by moneyness

To correct this problem, models were constructed by the moneyness class. We defined
five classes based on the option’s moneyness. Beyond the commonly used in-the-money,
out-of-the-money, and at-the-money classes. We introduced deep-in-the-money (DITM)

2An out-of-the-money option is an option that has a strike significantly above (for a call) or below (for
a put) the underlying asset price.
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and deep-out-of-the-money (DOTM) classes, mainly to distinguish samples that were quite
problematic and purely theoretical. A DITM option is an option that has a strike signifi-
cantly below (for a call) or above (for a put) the underlying asset price.
These options can be contrasted with DOTM options, which have no intrinsic value and
also minimal extrinsic value (price close to zero).
To still have enough samples in each class we used quantiles of the training dataset mon-
eyness to define the limits of each class as below, where q denotes the quantile function:

Class Moneyness (m= K/S0)
ITM q0.1(m) < m < 0.95
OTM 1.05 < m < qu0.9(m)
DITM m < q0.1(m)
DOTM m > q0.9(m)
ATM m ∈ [0.95, 1.05]

The model’s performance is correlated to the option moneyness which suggests building
models accordingly (fig. 2.3). The global model performs the best on deep-in-the-money
options and in-the-money options. The predictions are more dispersed for out-of-the-money
(OTM) and deep out of the money options (DOTM). We also checked that there is no
relevant correlation with the maturity or volatility of the option by considering the scatter
plots of errors with respect to both the volatility and the maturity globally and for each
moneyness class (see example fig.2.4).

Although the models by class of moneyness yielded smaller errors than the global model
(3% of the strike as a global mean absolute error on the test dataset), this approach has
not been retained as it favors overfitting and undermines the model’s generality.
It also depends on the definition of the different classes.

Figure 2.3 – Scatter plot of the predicted and target prices by moneyness
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Figure 2.4 – Normalized error distribution by maturity and volatility

Black-Scholes call prices results: (dataset generated according to a fixed grid
for the option’s moneyness

Both the training and parameters’ gradient norm decrease efficiently (fig. 2.5).
The neural network predictions on both the training and test datasets are more accurate

Figure 2.5 – Hidden layers= [100,100], batch size= 1024, epochs= 50, batch normalization=
no, learning rate= 10−3
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when trained with a fixed moneyness grid. We report the results on an unoptimized model.
The average absolute error drops to 3% of the strike while the average relative error decreases
to 30% on the test dataset, as reported below (table 2.2). This is because we no longer have
aberrant moneyness values.

Metric MAE RMSE MARE RMRSE
Test dataset 0.028 0.040 19% 30%
Train dataset 0.028 0.037 18% 28%

Table 2.2 – Cross-validation metrics without hyperparameter tuning (Hidden layers=
[100,100],batch size= 512, epochs= 50, batch normalization= no, learning rate= 10−3

The optimized two-hidden-layer neural network has 100 neurons per layer, a batch size
of 320, and has been trained on 250 epochs with a learning rate of 10−3 and batch nor-
malization (table 2.3). In figure 2.6 we compare the predictions of the NN before and after
hyperparameter tunning, to highlight the importance of this step. The average normalized
error drops to 0.1% of the strike while the average relative error drops to 6% on the test
dataset.

Metric MAE RMSE MARE RMRSE
Test dataset 10−3 10−2 2% 6%
Train dataset 9e−4 10−2 2% 7%

Table 2.3 – Cross-validation metrics on the training and test datasets (BS call prices with
fixed moneyness grid)

Figure 2.6 – (a) Hidden layers= [40,40], batch size= 1024, epochs= 50,learning rate= 10−4

(b) Hidden layers= [40,40], batch size= 320, epochs= 250,learning rate= 10−3

Remark: To highlight the impact of the learning rate on the loss’s convergence, we reported
the train and validation losses as well as the parameters’ gradient norm for three identical
NN with the only difference being the learning rate (fig. 2.7). A large learning rate usually
causes the loss to drop quickly but prevents its convergence. A smaller learning rate induces
a longer time for the NN to converge.
Furthermore, when loss pics are observed at the end of the training, it can be helpful to
use a learning rate scheduler to updates the static learning rate used according to a given
schedule.
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The loss pics are also more common when using smaller batch sizes, or more sophisticated
architectures (adding hidden layers).

Figure 2.7 – Impact of the learning rate on the convergence of the loss: Hidden layers=
[100,100], batch size= 1024, epochs= 50,
learning rate: (a) 10−2, (b) 10−5, (c) 10−4

After the neural network has proved to correctly price European vanilla options, we
tested the approach on exotics. We report the results for the pricing of an Asian call option.

Black-Scholes Asian call prices prediction

Previously the prices were normalized by the option strike, but not in this case. This ex-
plains the scale difference for both the predictions and absolute errors (fig.2.8).

A two-hidden-layer FFNN with 100 neurons per layer trained for 500 epochs with batches
of size 320 and a learning rate of 10−3 yields an average relative error of 7% on the test
samples 3.1.

Metric MAE RMSE MARE RMRSE
Test dataset 1.47 2.0 8% 7%
Train dataset 1.26 1.8 7% 7%

Table 2.4 – Cross-validation metrics on the training and test datasets (BS asian call prices
with fixed moneyness grid)
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Figure 2.8 – Hidden layers= [100,100], batch size= 320, epochs= 500, batch
normalization= no, learning rate= 10−3

Heston surface call price prediction

Predicting Heston call prices, yielded comparable results (average relative error of 8%. Using
a fixed moneyness grid significantly improved the model performance. This inspired us to
directly map price surfaces on a fixed predefined grid for each given set of parameters (model
parameters, S0,r,q). In fact the NN now returns price surfaces rather than individual prices.
We thought this approach, can help the model better capture the price surface regularity.
This approach slightly improved the model’s global accuracy. If we ignore the aberrant
predictions in the short term, ie. for time to maturity inferior to 30 days, the average
relative error for Heston prices prediction becomes below 2% on the test dataset.

Figure 2.9 – Average relative prediction error on the test dataset (Heston call price)
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We compare in the figure below (fig.2.10) the call option price surface computing using
Quantlib 3 and the neural network approximation on a random test sample.

Figure 2.10 – Neural network approximation on a random test sample
(S0 = 37.8, r = 5.10−3, q = 1.2.10−2, v0 = 0.6, κ = 4.2, θ = 0.27, σ = 0.21, ρ = −0.68)

3A free open-source library for quantitative finance accessible on www.quantlib.org
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Hyperparameter tuning

We used an exponential activation function in the last layer to force the predictions (prices)
to be positive. For the hidden layers, we compared Sigmoid and ReLu. Relu yielded better
accuracy and was more likely to overcome the gradient vanishing problem and hence induced
a better convergence. It is also important to choose a twice differentiable activation func-
tion. In fact, option Greeks are as important as the prices themselves. Therefore, ensuring
that the neural network prices are at least twice differentiable makes computing greeks a
trivial task.
We also used batch normalization which refers to scaling the output of a layer by subtracting
the batch mean and dividing by its standard deviation. This technique usually speeds up the
training and can be useful for higher dimension problems [24]. However, it did not improve
the model accuracy in this regression problem unlike when dealing with sparse features in
images where this operation usually yields significant improvements.

2.3.3 Limits of the neural network approach

During the training, we encountered two main problems:

• Non-convergence of the loss function: The loss function did not converge at first, we
needed to normalize our inputs. Therefore we compared two normalization methods:
transforming the inputs to the same interval typically [−1, 1] and a standard scaling
normalization, which has been retained. Moreover, the neural network did not con-
verge to a global minimum. The loss was stuck at a relatively high level. Adjusting
the learning rate and using proper random initialization for the weights helped solve
the problem. It’s important to note that this problem is common for non-convex op-
timization. In particular, deep neural networks are non-convex. Therefore, stochastic
gradient descent does not necessarily converge to a global minimum.

• Overfitting: to avoid overfitting we limited the number of nodes and thus of trainable
parameters. We tried adding a dropout function in the hidden layers. This operation
deactivates a random set of neurons in the layer, which forces the model to learn more
robust features. Moreover, we adopted k-fold cross-validation for hyper-parameters
tunning and only saved the model if it yielded an improvement in the validation mean
loss.

One of the main critics of this approach is the fact that the model cannot by default, guar-
antee no-arbitrage principle.
Many questions become legit. Is the model coherent with the financial reality and con-
straints? For example, do we respect the put and call parity for European options? To
what extent constraints like the convexity of put and call prices are respected?
Our first idea to improve this point was to predict price surfaces rather than individual
prices to help the model capture the regularity of the function. But this does not guarantee
no-arbitrage it only ensures more smooth surface predictions. A classical approach consists
of regularization. In fact, the option pricing theory provides necessary and sufficient condi-
tions for European options to be arbitrage-free. These conditions, in the case of call options
C = C(S,K, T, r, q), translate into:

C ≥ 0, ∂C/∂T > 0, ∂C/∂K < 0, ∂2C/∂K2 > 0
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These constraints are added as new penalty terms to the per-sample loss function, which
is minimized during the training. In other words, predictions that do not respect the no-
arbitrage conditions are penalized with a higher associated loss.

2.4 Unsupervised approach

This approach will be briefly presented, as it has been briefly explored but not retained and
developed in this report. Since it was not in line with the next step (deep calibration)
The main and common idea in most approaches using NN to solve stochastic differential
equations (SDEs) and (PDEs) is that we do not need to compute a target output y and
train the NN to map the input parameters to the output. Therefore these approaches are
categorized as "unsupervised". They are all based on the minimization of a loss function
conveniently defined based on the PDE.

The deep Garlekin method

When exploring the different deep pricing paradigms mentioned in the literature, we were
intrigued by this approach and tried to implement the deep Galerkin method (DGM)[27]
for the pricing of American options.
This algorithm is particularly suited for solving high-dimensional PDEs. The authors choose
to apply this general approach to the particular case of American options.4 because the
associated pricing PDE belongs to the class of high-dimensional free boundary PDEs. This
class of PDEs provides a unique opportunity to assess neural networks’ accuracy on a class
of high-dimensional PDEs with no semi-analytic solutions5. Since in this class, the error
bounds can be calculated for any approximate solution.
Galerkin methods refer to a wide class of computational methods that seek a reduced-
form solution to a given PDE. The reduced-form solution is a linear combination of basis
functions. In this paper, the deep Galerkin method (DGM) is based on the same idea but
uses a NN instead of a linear combination of basis functions.
The NN is trained to satisfy the differential operator, the initial condition, and boundary
conditions based on the PDE, on randomly sampled points of the parameters space of
interest.

2.5 Deep pricing conclusion

The deep pricing approach is promising as it can correctly learn and map the pricing func-
tion on a given parameters space of interest and instantaneously predict the price surface
for different market settings ("fast surface"). Once the NN is trained, computationally ex-
pensive MC simulations can be discarded.
We report computing time in a simple MC simulation case with 100 steps and 10 000 sce-
narios. This table is for illustration purposes only since MC computing time may vary.

4An American option is a financial derivative on a set of stocks allowing the holder to exercise their
rights at any time before and including the expiration date. The problem’s dimension (PDE dimension)
equals the number of stocks in the portfolio.

5This means that the problem is irreducible (its dimension can’t be reduced). In fact, if a semi-analytic
solution existed, this means that the PDE has been transformed into a lower-dimensional equation
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However, the prediction task boils down to evaluating the neural network function in the
input vector with O(1) complexity.

Method Asian call BS Lookback call BS Asian call Heston Lookback call Heston
Simple MC 0.27− 0.3 seconds per price on average 0.72− 0.75 seconds per price on average
NN instantaneous regardless of the size of the vector to be predicted ( < 0.1 seconds)

We should finally highlight that in this approach, the sampling method is crucial. It is
the case for both the supervised and unsupervised methods. How the training samples are
generated/chosen is the most important factor in determining the accuracy of the method.
One could criticize the fact that the training samples, generated randomly, do not reproduce
the historical market prices representativity. But this can be an advantage in stressed sce-
narios for example, where market settings are generally not historical, but rather unforeseen
rare scenarios.
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3
Deep calibration: option pricing models

calibration

3.1 Deep calibration paradigm

3.1.1 Problem overview

Model calibration is an optimization problem. Given a price surface/volatility surface1, it
consists in finding model parameters such that the model prices best approximate the given
surface according to an appropriate metric. Often the L2.

In the literature, this problem is generally formulated using the implied volatility surface
(IVS) rather than the price surface. The optimization problem is generally solved using iter-
ative optimizers such as Broyden–Fletcher–Goldfarb–Shanno (BFGS), differential evolution
(DE), or Levenberg-Marquardt (LM). These optimizers rely on the repetitive evaluation of
the cost function (the function to minimize) and therefore can be computationally intensive
when for instance, a Monte Carlo simulation is needed for each evaluation. This is typically
the case for stochastic volatility models.

As explained in the previous chapter, fully connected neural networks are powerful re-
gression tools able to approximate any continuous real function arbitrarily well. NN, as
explained previously, can be used to predict instantaneously and accurately a price or a
volatility surface. We call this step "fast surface".

The idea behind deep calibration is to leverage this capability to tackle models calibra-
tion differently. In this paradigm, the calibration bottleneck due to the computationally
inefficient pricing and assessment of the cost function can easily be lifted.

1Generally, we consider market volatility surface
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3.1.2 Problem’s reformulation

Let’s first formulate our problem clearly to understand the different approaches to tackle it:
We have prices of financial products generated by some financial model parameterized by
parameter vector θ = (θobservables, θmodel) ∈ Θ, where Θ is the parameter space or our space
of interest.
For example in the Black-Scholes framework, ,using the previously introduced notations,
the parameter vector is θBS = (θobservables = (S0, r, q), θmodel = (σ)). Similarly, in the Heston
model: θhe = (θobservables = (S0, r, q), θmodel = (κ, θ, ρ, σ, v0)).
Given a set of prices (model-simulated prices or market prices), we seek the most appropriate
model parameters that would generate such a price surface. "Most appropriate" is defined
based on a given loss function typically L2 2 for a regression problem. This loss reflects the
distance of the original price structure to the predicted price structure.

We minimize: θ 7→ L2
data(θ), for θ ∈ Θ.

The calibration problem, hence consists in finding possible minimizer θ∗ and more specifically
θ∗model.

Many approaches are to consider in solving this problem from a machine learning
point of view:

• Directly learning the map from the data (prices and observables) to the
model parameters.

data 7→ θ∗model

This is typically the approach used by Andres Hernandez (2017) in [15], a reference paper
on the subject. He used a FFNN to calibrate a Hull-White interest rate model by directly
learning the inverse map from the data.

dr(t) = [β(t)− a(t) r(t)]dt+ σdW (t)

The network is trained with implied volatility surfaces as input and model parameters (a, σ)
as output 3.
This approach is quite ambitious. In fact, we do not know if the universal approximation
theorem still applies as the inverse map could be a discontinuous function. Therefore, the
neural network might learn correctly the map on the given training samples, but can’t gen-
eralize on out-of-sample data as stated in [10] and [29]. This approach is hence not suitable
for stochastic volatility models calibration, because they are generally over-parametrized
compared to the Hull-White model which has only two parameters to effectively calibrate.

• Learning the pricing map θ 7→ data , which is often quite regular, with artificially
generated data and then replacing the pricing functional with the learned
"fast surface" to solve the inverse problem using the classical minimization
technics [4].

2L2data(θ) =
∑n
i=1

(
ydata − ypredicted(θ)

)2
3The term β(t) is then deduced for the forward rate yield curve: β(t) = ∂f(0,t)

∂T +af(0, t)+ σ2

2a

(
1− e−2at

)
where f(t, T ) is the instantaneous forward rate.
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• Learning the pricing map ("fast surface") and leveraging the fact that the
NN is a nested function of the input parameters whose gradient is known
analytically. The gradient is known not only for the weights and biases but also
for the input parameters (model parameters + observables parameters) thanks to the
backpropagation principle. Hence we can apply the gradient descent algorithm(1) to
minimize the L2 loss with respect to the model parameters.

min
θmodel

(L2(θ))

3.1.3 Numerical implementation

Implied volatility

The implied volatility σiv(K,T, S0) is such that, given the price of a call option (market or
model price) C(S0, K, T ) and a zero coupon bond of maturity T , BT,T = exp(rT ), we have
the following equation:

C (S0, K, T ) = CBS (S0, K, σiv (K,T ;S0) , T )

The implied volatility surface is a central notion in the option pricing theory. By definition,
it is obtained from market prices of liquid European call and put options on the S&P 500
index. But this notion is easily extended to model prices.

Why do we need to compute implied volatilities ?
Although the approach we are about to develop can be directly applied using the price sur-
face. Generally, when we calibrate a model to market data, we minimize the model options
volatilities against market options volatilities. We want the model to generate consistent
and robust prices. Therefore, we rely on volatilities. Otherwise, market participants can
take advantage by quoting inconsistent prices.

Often the model we try to calibrate computes an option price, not the implied volatility.
This is typically the case when it comes to the calibration of a stochastic volatility model
or a volatility surface parameterization.
Consequently, a fast method to invert option prices into the associated implied volatility is
necessary [1].

Commonly used inversion algorithms such as Newton’s algorithm, the differential evo-
lution algorithm, or Brent solver are extremely long. In this implementation, we used an
algorithm based on Li and Lee (2011)’s SOR 4 algorithm and a good initialization introduced
by Stefanica and Radoicic (2017) in their paper An Explicit Implied Volatility Formula [10].
"Their formula is simple, fast to compute and results in an implied volatility guess with a
relative error of less than 10% " as described in a technical blog 5 and already implemented
on GitHub.

4An Adaptive Successive Over-Relaxation Method for Computing the Black-Scholes Implied Volatility
5https://chasethedevil.github.io/post/fast-and-accurate-implied-volatility-solver/
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3.1.4 Methodology describtion

The first step consists in training the "fast surface" using a neural network. For that,
we artificially generated the training dataset: the parameters are sampled from uniform
distributions whose extremes are defined a priori (This defines our space of interest).
We also used a fixed grid for both option’s moneyness (m = S0

K
)and time to maturity(ttm).

Then, we generate the model price associated with each set of parameters. This step is done
by diffusing the price dynamics and calculating the expected payoff using MC methods.
In practice, we used the QuantLib Python library[2] which has an efficient MC simulation
implementation. Implied volatilities are then retrieved through the Dan Stefanica and Rados
Radoicic algorithm.

Figure 3.1 – (a)Subset of a fixed-grid generated price surface (b) example of Heston IVS
from the training dataset

We then train a NN to map the volatility surface to the input parameters on the given space
of interest. The following figures (fig.3.2 and fig.3.3) show some metrics for the relative
errors between the neural network predictions and the target values averaged accross the
test dataset samples. Namely, the average, standard deviation and maximum. The overall
performance is uniform, except for short term options which is quite surprising.

Figure 3.2 – Average relative errors on the test dataset
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Figure 3.3 – Average relative errors on the test dataset

Once the “fast surface” NN is trained and tuned, we use it to calibrate to model. To
test the reliability of the deep calibration approach we generated Heston implied volatility
surfaces for dates from 31/12/2020 to 30/01/2121 using Quantlib and random parameters.
The model parameters are known and saved. We mask this information and apply two
different approaches to predict it. We then compare the IVS generated by the predicted
parameters and the target IVS to assess the approach’s performance. On the next page, we
summarize the two tested approaches (Algorithms 4 and 5).

The second approach consists in learning the pricing map (fast surface) and leveraging
the fact that the NN is a nested function of the input parameters whose gradient is known
analytically. The gradient is known not only for the weights and biases but also for the input
parameters (model parameters + observables parameters) thanks to the backpropagation
principle. Hence we can apply the gradient descent algorithm(1) to minimize the L2 loss
with respect to the model parameters. The approach is described in Algorithm 5 :

min
θmodel

(L2(θ))
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Algorithm 4 First approach: Replace the pricing functional with the NN solution when
minimizing the loss

• Construction of "fast surface":
-Generate: 30 000 samples of θ = (θobservables, θmodel) (inputs) according to a given
sampling method.
- For each sample, define the model to diffuse with parameters θmodel. We imple-
mented this approach in Quantlib and therefore it can be adapted to other diffusions
already implemented in the library, typically local volatility models.
- Compute for each input the price surface (on the grid m × ttm). This step is
done using Quantlib’s pricing engine based on MC simulations. And the code can
easily be adapted to other options by adapting the following model’s description
and pricing functions.

{model : q l . HestonModel ;
d i f f u s i o n proce s s : q l . HestonProcess ;
p r i c i n g eng ine : q l . Analyt icHestonEngine
pr i c ed opt ion : q l . Option . Ca l l }

-Compute the implied volatilities
-Train a NN network to learn the pricing map (replicate the pricing model).

• Calibration
-Define the calibration bounds (an interval slightly larger than the one used to
generate the parameters).
-Given a target IVS surface, define the loss function as the difference between the
target surface and the surface predicted using the trained network ("fast surface").
- Minimize the loss function using global search optimization algorithms for mul-
tivariate functions, typically the differential evolution algorithm6, sequential least
square quadratic programming (SSLQP) and quasi-Newton methods available in
scipy.optimize. Consider as an initial guess for the search initialization a random
point in the calibration interval or its center.

Algorithm 5 Second approach: leverage the fact that the trained NN is a nested function
of the input parameters whose gradient is known analytically to minimize the loss on model
parameters

• Construction of “fast surface”:

• Calibration
-Define the calibration bounds (an interval slightly larger than the one used to
generate the parameters).
-Given a target IVS surface, define the loss function as the difference between the
target surface and the surface predicted using the trained network (’fast surface’).
- Minimize the loss function via a gradient descent type algorithm, where the loss’s
gradient with respect to the input can be expressed as a function of the NN’s gradient
with respect to the input. Consider as parameter initialization a random point in
the calibration interval or its center to compute an initial value for the loss function.
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3.2 Numerical results

3.2.1 Results

Both approaches are very quick to calibrate surfaces. We have tried several optimizers.
The differential evolution algorithm seemed to globally yield the most accurate results. The
original surfaces are shown in pale orange in figure 3.5 and figure 3.4. We represent the
calibrated surface using the first approach, on the left. The surface obtained using the
second method is represented on the right. The legend details the observable parameters
and model parameters (historical or real) as well as the calibrated parameters (fig.3.4 and
fig.3.5 ).

The first approach calibrates well to the target surface. The second method seems to have
problems with the calibration of the kappa and more generally when there is a significant
difference in scale between the parameters to be calibrated. Opting for different learning
rates to update the input parameters in the gradient descent algorithm would probably help.
Besides, robustness is definitely an important criterion for the performance of a calibration
algorithm. To prevent significant shifts in the calibrated parameters, it is advisable for
successive dates to initialize the search with the parameters that have been calibrated on
the previous surface. This method’s convergence strongly depends on the initialization. For
that, it’s not very robust. These limitations need to be further analyzed.

Figure 3.4 – Calibration results
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Figure 3.5 – Calibration results

3.2.2 Calibration results on market data (CAC 40)

For the final validation of the calibration algorithm, we used implied volatility surfaces for
CAC 40 options available on Bloomberg API via the OVDV function and derived from
European call and put prices. Particular attention was paid to the validation of the first
approach, which proved to be the most accurate on synthetic data. Let’s consider the im-
plied volatility surface of the CAC 40 index on the 1st of June 2020 (fig.3.6) : The first
approach yielded a RMRSE of 13% with as initialization the following set of parameters
(v0 = 0.32, κ = 0.5, θ = 0.05, σ = 0.45, ρ = −0.8).
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Figure 3.6 – IVS of the CAC 40 (01/06/2020) (source: Bloomberg: OVDV)

v0 κ θ σ ρ
0.294 2.771 0.086 1.445 -0.689

Table 3.1 – Heston parameters obtained by the second calibration approach (CAC 40 June
2020)

The calibration results seem consistent and show the following:

• A high speed of mean reversion κ and a high level of the volatility’s volayility parameter
sigma revealing a large fluctuations in the stock’s variance dynamics.

• A level of mean reversion θ of 8.6% which is equivalent to a volatility of 29.32%.

• A negative correlation between the stock process and the variance process known as
leverage effect.

• A relatively high level of volatility due to the Covid 19 crisis and consistent with the
market. For instance, the VIX index was 28.23% on the 1st of June).

3.2.3 Critics and further improvements

Our approach has several limitations that can be improved: First, to assess the performance
of the different trained models and choose the optimal hyperparameters, we averaged the
relative errors on test samples generated according to the same grid points for both the
option’s moneyness and time to maturity. It would be more interesting to calculate the
errors on other surface points. This new error will reflect, in addition to the training error,
the model interpolation error.

Regarding the calibration approach, the method using the “fast surface” to optimize
the loss function by traditional optimization algorithms is globally more efficient than the
second approach, which we tried to formalize. Both methods save a considerable amount
of time compared to traditional calibration methods. On average the calibration time of
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a one-month history is 1.17 seconds for the first approach and 600ms for the second one)
compared to more than 30 minutes for quantlib calibration using the differential evolution
algorithm.

The second calibration approach, although attractive, still needs to be researched and
improved, in particular by using an adaptive gradient descent method (adapting the learning
rates using the order of magnitude of the parameters). Its convergence rate also depends
on the initialization point of the search and could be further improved. It would also be
interesting to rethink the convergence criterion and to find a compromise between the speed
of convergence and the accuracy of the calibration. In our implementation, we used as a
stopping criterion a maximum number of iterations limited to 2000 or a loss lower than 10−5.

Within the framework of the internship and due to lack of data accessibility, this ap-
proach has been built only on synthetic data. Although it is highly recommended to build
this approach on synthetic data ([5]) for the training phase of the NN, the approach should
be validated on market data for the calibration phase. Therefore we used implied volatility
surfaces for CAC 40 options to validate the approach. Besides, knowing the real parameters
that generate the surfaces to be calibrated allowed us to better identify the flaws of each
approach. We tried to apply these calibration techniques on a market volatility surface, the
results were comparable, with higher accuracy for the first approach. The next step would
be to test the approach and assess its performance on more market data.

As mentioned before, a commonly expressed concern would be the fact that the neural
network used for the calibration has been trained on synthetic data, which is not necessar-
ily representative of historic market data. We believe that using simulated data, properly
sampled on a parameter space of “real interest” and consistent with the market mechanisms
allows the model to be more general and exhaustive. In [5] the authors propose a way
to improve the sampling method. They suggest a blended approach combining informa-
tion from historic market data with a synthetic data generator algorithm to produce more
market-consistent samples for the training. Furthermore, the model trained on synthetic
datasets can easily be adapted to calibrate stress-test scenarios where the market settings
are not necessarily historical but simulated.

3.3 Contributions of the neural network approach from
a risk management point of view

3.3.1 More stringent regulatory constraints:the Fundamental Re-
view of the Trading Book

Following the 2008 financial market crisis, the Basel Committee on Banking Supervision
(BCBS) carried out a thorough review of market risk requirements and introduced several
reforms to the Basel II market risk framework. The most urgent deficiencies were addressed
by incremental directives while more structural flaws were tackled in the Fundamental Re-
view of the Trading Book (FRTB) (fig.3.8).
The FRTB aims to address the potential systemic risks resulting from unmatched levels
of market volatility. It ensures that both the standardized (SA)and internal model ap-
proaches (IMA) to market risk modeling, deliver adequate capital requirements estimation.
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The ongoing COVID-19 pandemic has certainly emphasized how critical it is for financial
institutions to hold sufficient capital buffers to protect against unexpected adverse market
movements.

Figure 3.7 – FRTB regulatory overview [20]

Market risk capital components under FRTB

Under Basel II.5/III framework, market risk requires the calculation of VaR and Stressed
VaR using a single methodology and liquidity horizon. The FRTB framework under IMA re-
quires multiple liquidity horizon for each risk category and calculations of expected
shortfall (ES) and stressed expected shortfall. This will increase by more than a ten
factor banks computational requirements to estimate internal model market risk capital.
Expected shortfall requires the revaluation of the entire portfolio daily within a window
(often a two-year historical simulation). Stressed metrics adds a further level of complexity.
These increasingly restrictive regulatory constraints are omnipresent. Without making a

Figure 3.8 – Market risk capital components under FRTB [30]

long list, we should mention that this is still the case for counterparty risk with the Targeted
Review of Internal Models (TRIM), where banks are required to have even more accurate
models to assess counterparty risk. A more accurate model means more simulations. To sum
up, stricter regulatory requirements introduce a significant computational challenge to which
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banks need to adapt their current methods. The "fast surface" approach can significantly
alleviate this computational burden. In fact, the major advantage of the NN approach over
MC simulations lies in the significant time savings. Once the model is trained, evaluating
the values of an entire portfolio is practically instantaneous and scales with the size of the
network, not the size of the training data.

3.3.2 Model validation and stress-tests

The deep learning approach introduced in this work can also be applied to stress-tests. Since
the network is trained on synthetic data, it does not introduce any historical bias to value
a portfolio in an extreme market configuration.
Another potential application for the calibration is backtesting and model validation. For
instance, for front-end pricers, in the context of P&L assessment, the trained network can
learn to replicate the model used. Thus, it can find the calibrated model parameters from
the generated data and validate their relevance in a monitoring/audit stage.
Calibrating and testing stochastic models across large databases becomes an easier task.
For example, if it takes a second to compute option prices, testing a model that recali-
brates daily over a thousand assets and two years of data would have taken a week. With a
NN based approach it would take an hour. We finally highlight that we strongly advocate
this separation of pricing and calibration in a neural network-based calibration framework.
Although, it might be tempting to apply a neural network to directly estimate model pa-
rameters from market prices without using a pricing function based on a traditional model.
This approach imposes several issues. As explained by Horvath et al.[17] these approaches
might not align with the prevailing regulatory requirements due to their lack of interpretabil-
ity. Furthermore, it is more difficult to prove their stability and robustness as required by
regulators.
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4
Pricing of Variable Annuity contracts

We can apply the deep pricing approach not only to options pricing but also to complex
insurance policies. In particular, it applies to variable annuities (VA), often priced using
the option pricing theory.
Variable annuities are long-term insurance policies that can be used by policyholders to
accumulate wealth. These products are attractive investments and retirement vehicles be-
cause they contain guarantees such as death benefits and living benefits. In this chapter, we
give a brief introduction to variable annuities and the computational challenges associated
with their valuation as well as an application of the deep pricing approach to mitigate the
pricing challenges.

4.1 Variable Annuities market: Context, trends, and
challenges

4.1.1 A changing retirement context

The French pension system has operated since 1945 on a pay-as-you-go basis, with retirees’
pensions financed by the contributions paid by the working population. However, the tran-
sition to baby-boomers retirement since the end of the 2000s has considerably deteriorated
the system’s sustainability.

The crisis partly arises from the inversion of the age pyramid and the increase in life
expectancy, which significantly decrease the ratio of active contributors to retirees. As a
result, the pay-as-you-go pension system has become in deficit. Projections for the coming
decades are not optimistic as stated in the 2017 report from the Conseil d’Orientation des
Retraites (COR).
This problem is not unique to France but affects a large number of countries. The age
pyramids below show projections of the population age structure by 2050 in several countries
according to the United Nations median scenario published in 2008. The top of the pyramid
will be strongly lifted by longer life expectancy. While the United States and France have
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maintained a relatively broad base, Italy and Germany bases have significantly shrunk,
giving their pyramid a top shape.

Figure 4.1 – Evolution of the age pyramid by 2050 according to the United Nations projec-
tions of 2008 (median scenario)

In France, several reforms were considered to introduce an additional part of income while
reducing the compulsory benefit plans/Social Security to meet the changing needs. The
new system follows the principle of capitalization, whereby contributions are saved in an
individual account which will be used to finance the contributor’s retirement. Today, the
French pension system is divided into three parts: the general compulsory basic scheme, the
compulsory complementary scheme, and the supplementary scheme.

Figure 4.2 – Hierarchy of French pension schemes

Workers have become aware of the urge to build up their own supplementary retirement
income, and life insurance is an interesting solution. It offers a range of products depending
on the insured’s risk appetite. These products vary from conservative traditional risk-free
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annuities with a relatively low guaranteed rate to risky mutual funds that might be quite
profitable but with an important risk of capital alienation in the case of a market’s downturn.

The increased reliance on individual savings plans and the increasing life expectancy
are leading to a growing need for longevity risk insurance (the risk of one surviving beyond
their capital depletion) as well as return for retirees. In fact, a 1% greater return means
roughly 10 extra years of spending. Retirees can not afford to depend on fixed-income
(outing annuities) because it results in capital alienation. For instance, a 2% inflation rate
over 25 years leads to a 40% reduction in purchasing power. Therefore, retirees need equity
markets investments with guaranteed income.
In this context, Variable Annuities were introduced as a reasonable mid-point between
mutual funds with both high expected performance and high risk and fixed annuities which
are almost risk-free but with relatively low expected performance. In fact, variable annuities
offer equity market participation with attractive protection against downside market risk.
They hence make appealing tax-deferred retirement vehicles.

Figure 4.3 – Overview of life-insurance products

4.1.2 Variable Annuities market trends and challenges

Introduced in the early 1990s in the United States, variable annuities have known a huge
success at the end of 1990s and early 2000s not only in the United States but also in several
markets around the world, mainly Japan, Canada, and the UK.
While the 2001 crisis had an accelerating effect on Variable Annuities with investors look-
ing for guarantees against financial markets downturn risk, the 2008 financial crisis harmed
sales and generated significant losses for insurers. In 2008, the Life, Savings, and Pensions
business results fell sharply, due to the increase in Variable Annuities hedging costs.
Since the economic crisis of 2008, their popularity has been fluctuating and trending down-
ward. But sales are slowly recovering as shown in the following graphic and confirmed in the
Life Insurance and Market Research Association (LIMRA) latest report. VA sales in the U.S
reached $93.4 billion in the first three quarters of 2021, 32% higher than the previous year.
And the third-quarter sales represented 49% of the total annuity market in the U.S, the
highest level since 2018. We should highlight that this product line represents a significant
business for insurers. For example, it stands for $1.7 trillion assets under management in
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Figure 4.4 – U.S. Individual Annuities Sales Trends between 1986-2020 ($ Billions), LIMRA.

2017 in the U.S, the world’s largest Variable Annuity market (Insured Retirement Institute
2018). This is comparable to the size of the hedge fund industry.
Although, the market is still dawning in Non-Japan Asia and Europe, it represents a huge
business growth opportunity. The region presents high levels of economic activity thus an
increasing level of personal wealth and propensity to save. Moreover, population aged be-
yond 60 years structure evolutions, reveal a significant and growing retirement opportunity
as shown on the following chart.

Although Variable Annuities offer advantageous guarantees, they didn’t meet success in

48



Figure 4.5 – Projected population aged 60+ in Asia, AXA GIE, 2017

France. Two main factors explain policyholders’ lack of appetite for these policies. First,
as presented in the first section, the French Social Security system requires contributions
to the basic pension general scheme (1st pillar), to the complementary schemes AGIRC,
ARRCO, and company pension plans (2nd pillar). This leaves few workers who can afford
to subscribe to Variable Annuities, as these products require a considerable investment with
premiums typically of several tens of thousands of euros.
Second, in the 2000s, when variable annuities were booming in the U.S and Japan, euro
funds still offered high guaranteed rates and attractive returns.

To sum up, the limited target group on the French market, the high cost of the guar-
antees, the complexity of managing large VA portfolios, and the numerous tax-efficient
contracts already on the market are the main reasons behind the non-development of the
market in France. In addition, Axa, who was the first to propose these policies in the U.S,
suffered larges losses after the subprime crisis. The complexity of the underlying guarantees
and the limitations of the commonly used methods to efficiently manage large VA portfolios
hindered successful sales and discouraged the competitors to enter the market. Moreover,
most reinsurance companies exited the VA market after the crisis, and insurers were required
to increase VA reserves. In fact, hedging programs have been strengthened after the crisis,
leading to a growing need for computational efficiency.

4.2 Variable Annuities: presentation and definitions

4.2.1 Presentation of Variable Annuities contracts

Variable Annuities (VA) are capital guarantees that provide benefits in the event of life or
death on contracts invested in Units of Account (UA) regardless of market trends. Different
guarantees can be added to protect the investment. The policyholder pays a single pre-
mium at the subscription of the policy of at least several thousand euros or makes regular
payments. The insurer suggests a diverse combination of unit-linked investments, typically
mutual funds that invest in (equities, bonds, money market instruments, etc..) depending
on the policyholder’s risk aversion.

49



Variable Annuities are considered as tax-deferred retirement products allowing the pol-
icyholder to receive a complementary income at retirement. It means one pays no taxes
on the gains from the contract until withdrawal, where ordinary income tax applies. These
policies are hence taxed in the same way as traditional life insurance policies.1. But differ
in two main ways:

• Surrenderability: in contrast to other pension contracts, variable annuities can be
surrendered at any time. If the surrender is made before the date defined in the
contract, guarantees do not apply.

• Fees: Due to their guarantees, the costs of these contracts are much higher than
traditional life insurance policies. They are almost always subject to a 3 to 5% fee on
payments.

The accumulation phase and the payment phase are the two phases of a variable annuity
contract.

During the accumulation phase, the client’s savings follow the performance of financial mar-
kets. The capital invested is accessible at any time, but subject to a redemption fee. During
this phase, the contract’s guarantees, specifically the minimum amounts the policyholder
should be receiving during the payment phase are revalued according to different revaluation
mechanisms stated in the contract. These mechanisms will be detailed in the next section.

During the payout phase, the revalued savings are distributed to the beneficiary of the con-
tract in the form of a single capital (lump sum) or in the form of annuities according to
underlying guarantees and the performance of the selected funds. For instance, in France,
the guarantee offered for classic unit-linked contracts is generally the floor guarantee. Dur-
ing the payment phase, the beneficiary of the contract receives the maximum between the
current value of the savings and the floor amount. The latter is the sum of the payments
made by the policyholder net of withdrawals.

After understanding the life of variable annuity contracts, we will introduce some fun-
damental definitions. These definitions are useful to understand the underlying guarantees
and to correctly assess the different engagements.

4.2.2 Useful definitions

We introduce two fundamental notions that are useful for a good understanding of the
products the Account Value (AV) and the Benefit Base (BB). These two notions are to be
differentiated.

• The Account Value (AV) is the amount of savings accumulated at a given date. This
value, invested in investment funds, evolves according to the quotation of the assets
on the financial markets. Fees for the management of the contract and the guarantee
are periodically deducted from this account.

• The Benefit Base (BB), is the basis for calculating the minimum amounts that will
be paid to the insured during the payout phase. This base is revalued periodically
according to the roll-up or ratchet mechanisms described below.

1Provided the contract has been in existence for at least eight years, only the interest portion of this
income will be subject to the 12.3% social security levy and a flat-rate tax of 7.5%
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Revaluation options for the Benefit Base (BB): Roll-up and Ratchet mechanisms

• The roll-up reset: The Benefit Base BBtn is capitalised annually at a given rate rRU ,
defined in the contract. The Benefit Base amount at time tn+1 is given by :

BBtn+1 = (1 + rRU)BBtn

The roll-up rate is generally between 0% and 5% depending on macroeconomic and
financial factors, typically the level of interest rates and inflation of the currency in
which the contract is denominated.

• The ratchet reset: The Benefit Base is at all times the maximum value reached by
the policyholder’s savings on a given set of dates fixed in the contract (generally the
policy anniversary dates). Obviously, this is an expensive guarantee, because if the
financial markets rise during the life of the contract, the minimum amounts paid to
policyholders will be higher no matter how drastically markets might fall afterward.
The Benefit Base at time tn+1 verifies the following expression:

BBtn+1 = max(AVtn+1 , BBtn) = max(AVt0 , AVt1 , . . . , AVtn+1)

where t0, t1, . . . , tn+1 are the policy anniversary dates.

We present the fundamental and commonly used revaluation techniques, more complex
mechanisms can also apply. Moreover, variable annuities contracts not only come with
guarantees (GMxB: Guaranteed Minimum x Benefit 2) but also with the possibility to com-
bine different guarantees in the same product to meet the policyholder’s specific needs and
savings goals as shown in the following graphic (fig. 4.6). This rapidly increases the com-
plexity of the products and the challenges associated with their management.

We can broadly divide the guarantees into two categories:

• The guaranteed minimum death benefit (GMDB). A GMDB provides a guaranteed
minimum benefit to the beneficiary upon the death of the policyholder.

• The guaranteed minimum living benefit (GMLB). This class of GMxB includes several
guarantees which will be detailed later. It offers protection against the possibility that,
after retirement, one outlive their assets.

Most of the theoretical papers examine elementary Variable Annuities. These prod-
ucts as we will see in the next sections can be priced using option pricing theory after
some simplifying assumptions. Accounting for the full panel of risks (for instance Modelling
policyholder’s surrender behavior) makes the traditional methods purely theoretical and in-
efficient. Furthermore, the current marketplace offers a wide variety of increasingly complex
forms of guarantees on VA products. As a consequence, more innovative methods such as
the deep pricing approach are needed to improve the management of these products.

2GMxB is a generic notation to the following guarantees: GMDB, GMAB, GMIB, GMWB, and GLWB.
Where D, A, I, W, and L respectively stand for Death, Accumulation, Income, Withdrawal, and Living
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Figure 4.6 – Overview of Variable Annuities guarantees according to customer needs, source
[21]

4.3 Variable Annuities valuation

4.3.1 The guaranteed minimum death benefit (GMDB)

A GMDB contract guarantees that if the policyholder dies before the contract’s maturity
date T , the beneficiary of the contract designated at subscription receives the higher of
the account value and the benefit base adjusted for withdrawals. In traditional unit-linked
life-insurance contracts, the benefit base is the initial premium (or total premiums in the
case of regular payments). For a guarantee with a roll-up respectively ratchet revaluation
mechanism, it corresponds to the premium accumulated at a specified interest rate , respec-
tively the maximum account value at any anniversary of the account .
The beneficiary recieves:

max (AVtdeath ;BBtdeath) = AVtdeath + (BBtdeath − AVtdeath)+ (4.1)

where tdeath is the date of death of the policyholder.
The minimum guaranteed amount limits losses in the event of a downturn in the financial
markets, while offering the possibility of profiting from an upturn through the revaluation
mechanisms of the benefit base.

In the case of a premium return or a roll-up guarantee, the death payment is similar
to an American put option held by the beneficiary on the investment fund. BBtdeath is
the strike price,T the maturity and tdeath the exercise date. However, this is not a classic
American option, since the strike is not known in advance.
If we fix tdeath, the guarantee becomes a European put option with maturity tdeath and can
be easily priced using the Black-Scholes formula.
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Let’s take an example. Let St the value of the fund at time t. For simplicity we take S0 = 1.
The undiscounted insurer’s engagement for a premium return GMDB at time tdeath, Vtdeath
can be expressed as following:

Ex [Vtdeath ] = Ex [max (1− Stdeath , 0)] = Ex [E [max (1− St, 0) | tdeath = t]]

= Ex[Put(1, 1, T )] =

∫ ∞
0

Put(1, 1, t)dFx(t) =

∫ ∞
0

Put(1, 1, t)f(t)dt
(4.2)

where Fx is the mortality cumulative distribution function and f(t) its probability density.
The GMDB guarantee is one of the simplest guarantees to price and explicit closed formulas
can be derived for the different reevaluation options given particular choices for the mortality
function, typically the exponential mortality. (See Annexe 3). In fact, two approches are
possible to estimate the integral:

• Fit the mortality function with a continous parametrical model

• Discretizise the time step and approach the mortality curve from a discrete perspective.

A major drawback of the first method is that generally, a one-parameter model such as the
exponential model fits poorly the data while two or more parameter models have a better fit
but the time integral has no longer an analytical solution. The second approach is straight-
forward to implement but a time step must be chosen to be small enough not to distort the
continuous property of mortality. Normally this time step is smaller than a year. Hence an
interpolation hypothesis must be considered to adapt yearly mortality tables.
A commonly cited pricing approach in the literature is the weighted puts method where
the guarantee value is approached by the sum of European put options maturing at regular
intervals (generally monthly) weighted by the probability of death at each date.

When is a GMDB profitable for the contract’s beneficiary?
In the following, we will focus on guarantees with ratchet revaluation options, which are
usually more complex to price.
A GMDB is profitable if the policyholder dies during the life of the contract (tdeath < T ),
and the guaranteed amount is higher than the account. If the GMDB is payable at the
end of the month of death, the expected present value of the benefits can be expressed as
follows:

EPVGMDB =
N∑
k=1

qkx · E

[
exp

(
−
∫ k/12

0

rtdt

)
·max

(
BBk/12 − AVk/12, 0

)]
(4.3)

where qkx is the probability of a policyholder age x dying in month k, N is the number of
months until the expiration of the contract, and BBk/12 is the benefit base at the date of
death of the policyholder.

4.3.2 Guaranteed Minimum Accumulation Benefit (GMAB)

The Minimum Accumulation Benefit is similar to the GMDB but rather “in case of life” of
the policyholder. It guarantees a flat or contractually increasing (rollup option) accumu-
lated lump sum amount if the policyholder is alive by the end of the accumulation phase.
The policyholder should then receive the greater of their account value and some guaranteed

53



Figure 4.7 – GMDB example, source [21]

amount specified in the contract.

When is a GMAB profitable for the contract’s beneficiary?
A GMAB pays off if the policyholder is alive at the end of the accumulation phase and the
account value is less than the guaranteed value (benefit base). The expected present value
of the benefits can be written as:

EPVGMAB = pTx · E
[
exp

(
−
∫ T

0

rtdt

)
·max (BBT − AVT , 0)

]
(4.4)

where T is the time until the expiration of the contract and pTx is the probability of a poli-
cyholder age x surviving T years. Note that pTx = 1− qTx

Figure 4.8 – GMAB example, source [21]

4.3.3 Guaranteed Minimum Income Benefit (GMIB)

The Guaranteed Minimum Income Benefit guarantees minimum annuity if the policyholder
desires to annuitize their contract. At maturity they have two options: either recieve the
accumulated acount value and/or annuitize it at market conversion rate (aT ) or annuitize

54



it at a guaranteed conversion rate (ag).

This benefit hence depends on both the asset’s performance and the interest rate level
at the time of conversion. It is the right, to buy a fixed immediate life annuity, for a deter-
ministic strike price during the life of the contract. Consequently, it can be seen as a call
option on annuity purchase factors.
From the insurer’s perspective, they promise to guarantee an option on two underlying
stochastic variables; future interest rates and future mortality rates.

The GMIB guarantees that the annuitant will receive payouts whose present value is
equivalent to the greater of the annuitization and the account value. The guaranteed benefit
is an annuitization factor multiplied by the initial account value reevaluated according to
a given revaluation mechanism. In the case of a life-contingent annuity, longevity risk also
adds to financial risk. We express the guarantee’s payoff at time tj as follows:

Payofftj =

{
0, if tj < T

max
{

0, BBtj
aT
ag
− AVtj

}
, if tj = T

(4.5)

where ag and aT are respectively the guaranteed purchase price and the market price of an
annuity paying 1 unit per year. ag is modeled assuming an interet rate model. A simple
exemple is:

ag =
∞∑
n=0

npxe
−nr

where the interest r r is typically assumed to be around 5% and npx denotes the probability
that an annuitant aged exactly x lives for another n years.

When is a GMIB profitable for the contract’s beneficiary?
The guarantee is profitable when the guaranteed benefit exceeds what Account Value could
purchase at the current interest environment.

Figure 4.9 – GMIB example,source [21]

4.3.4 Guaranteed Minimum Withdrawal Benefit (GMWB)

The Guaranteed MinimumWithdrawal Benefit (GMWB) is the most complex of the GMxBs.
Not only the basic payment structure is strongly related to Asian options, but the guar-
antee value is very sensitive to the policyholder’s behavior. That is, in order to price this
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guarantee it is important to take into account the surrender behavior of the policyholder. A
variation of this product is the GMLB, Guaranteed Minimum Withdrawal Benefit for Life
which corresponds to a lifetime guarantee.

The GMWB promises the annuitant the possibility to yearly withdraw some fixed amount
from their account until the benefit base is entirely depleted, even if the account value is zero.
The benefit base is typically set equal to the initial premium and declines with withdrawals.
At maturity, the remaining withdrawal balance is returned to the policyholder.
We suppose no lapses and a static withdrawal strategy, where the policyholder can withdraw
up to a fixed annual withdrawal rate (rW ) of the guaranteed withdrawal base only on the
policy’s anniversary dates. the expected present value of the guarantee can be expressed as
follows:

EPVGMWB =
T∑
n=1

E

[
exp

(
−
∫ n

0

rtdt

)
·max (0.1 ·BBn − AVn, 0)

]
(4.6)

where BBn is the benefit base, ratcheted in proportion to the account value less withdrawals.
Finally, the liability for a contract on a given day is calculated as the expected present value
of the benefits minus the expected present value of the fees.

When is a GMWB profitable for the contract’s beneficiary?
A GMWB pays off if the account value has been depleted, but the policyholder still has the
right to make withdrawals.

Figure 4.10 – GMWB example,source [21]

4.4 Challenges associated with VA pricing and hedging

4.4.1 Pricing of Variable Annuity contracts in practice

Correctly pricing the different guarantees embedded in variable annuity contracts relies on
correctly modeling the underlying risks and their interactions.

On the one hand, the financial risks are modeled in a risk-neutral framework. Recall that
the purpose of the risk-neutral valuation is to retrieve the price of traded financial instru-
ments so as to prevent arbitrage. Consequently, scenarios probabilities are implied from the
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prices of traded securities whose payoffs depend on those scenarios. Since investors are over-
all risk-averse, risk-neutral valuation generally implies higher probabilities to unfavorable
and extreme scenarios than for favorable ones.

On the other hand, non-financial risks (policyholder behavior, mortality risks, lapses,
etc..) are generally real-world scenarios based on historical observations and dynamics.
To sum up, the difference between risk-neutral and real-world scenarios does not lie in the
individual scenarios themselves; but rather in their occurrence probabilities.

Economic scenario generators are used to simulate movement scenarios of the indices
according to an asset model. There are two types of scenarios: risk-neutral and real-world.
Risk-neutral scenarios are simulated under the risk-neutral measure; while real-world scenar-
ios are simulated under the real-world measure. Risk-neutral scenarios are used to calculate
the fair market values of financial derivatives such as the guarantees embedded in variable
annuities. Real-world scenarios are used to calculate solvency capitals or evaluate hedging
strategies.

Variable annuity contracts pricing process in practice:

Figure 4.11 – Financial and non financial risk drivers

1. Identify the key financial and non-financial risks impacting the value of the embed-
ded guarantees (Equity movements risk, interest rates risk, longevity risk, etc). (See
fig.4.11

2. Choose an Economic Scenario Generator (ESG) to model the financial risks. This
implies making assumptions on the financial risk drivers and diffusing the retained
models under risk-neutral probability.

3. Calibrate the ESG according to implied/market values, and historical data.

4. Set assumptions for non-financial risks based on company and/or industry experience
(real-world scenarios).
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5. Valuate the guarantees using a sufficient number of Monte Carlo simulations to ensure
convergence of a risk-neutral valuation.

4.4.2 Overview of the problems and commonly used solutions

As we have seen VA guarantees can be often considered as financial options and consequently
option pricing theory is applied for both their pricing and hedging. Many examples in the
literature deduced that the restrictive assumptions retained to derive closed-form formulas
for the pricing of these guarantees can yield in these products being largely underpriced.
These restrictive assumptions include the modeling of the main financial risk factors namely
the interest rate, the fund’s dynamics, and the demographic risk factors particularly poli-
cyholders’ surrender behavior and the mortality dynamics.

The commonly used Black Scholes model assumes deterministic interest rates which do
not reflect the reality of the market and can introduce real discrepancies, particularly for
long-term financial guarantees such as Variable Annuities. The disparities due to these
simplifying assumptions widen as the complexity of the products increases. For instance,
Milevsky and Salisbury concluded in their 2006 paper that GMWB products were largely
underpriced.

Even for some of the more relatively simple types of guarantees, it is often infeasible
to derive closed-form pricing formulas without very restrictive assumptions. We saw in the
previous section that to derive a closed-form formula for a GMDB guarantee one should
assume a one-factor mortality risk model, typically an exponential model which does not
capture the real dynamics of mortality rates.

As a result, MC simulations are largely adopted to solve the problem. Although very
useful, these approaches yield a significant computational cost for insurers maintaining a
large portfolio of VA contracts. Many techniques were considered to reduce this cost. But
as guarantees and model complexity increase, the need for efficient techniques to value and
hedge VA is becoming crucial for insurance companies.
In the literature, there are three main categories of approaches to reduce the computational
cost of MC simulations:

• Scenario reduction approaches: when using Monte Carlo to value a portfolio of variable
annuities, the payoffs of the guarantees embedded in each policy are calculated at each
time step for a set of risk-neutral scenarios. Reducing the number of scenarios is one
way to reduce the runtime of MC simulation.

• Inforce compression approaches: these approaches reduce the runtime by decreasing
the number of insurance policies that are valued by MC simulations. In fact, to price
the VA portfolio, contracts are not considered independently but rather as groups or
model points via clustering techniques.

• Metamodeling approaches: these approaches are similar to inforce compression tech-
niques as both methods reduce runtime by cutting down the number of policies to
price. However, the former are more sophisticated. They rely on two major steps:
An experimental design method (EDM) is used to select representative policies and
a predictive model or metamodel allows interpolation between previously calculated
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values and the remaining policies. A wide range of EDM and predictive models were
considered in the literature (See Annexe 5.2.2 for an overview).

Figure 4.12 – A general framework of metamodeling approaches
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5
Variable Annuities deep pricing approach

In recent years, researchers have explored the idea of applying neural networks for the tasks
of pricing and/or hedging VA guarantees. Hejazi and Jackson (2017) used neural networks
in their approach to estimating the solvency capital requirement (SCR) for a large portfolio
of VA policies. They concluded that the neural networks approach yields accurate values
while greatly increasing the efficiency of the calculations.

The neural network pricing approach as previously introduced in this report aims to
map a set of policy characteristics and different economic settings to the MC estimation of
the policy’s liabilities or fair market value. Recall this approach is not model-free and we
need to make several assumptions on the main risk factors for the valuation.

The neural network can be used to compute guarantees sensitivities, hence once ade-
quately trained, daily MC can be discarded. We will compare the performance of the neural
network to the commonly used MC simulations, quantifying the gains in speed, and showing
that these gains can be obtained with little sacrifice in accuracy.

5.1 Training dataset

We saw in the second chapter when introducing the deep pricing approach how crucial data
quality is for the neural network to correctly learn the pricing function. However, it is diffi-
cult to obtain real datasets from insurance companies to train and assess the neural network
approach. Moreover, the neural network should be trained on a consequent number of data
points for the model to be reliable and accurate. We implemented a simple version of the
MC valuation framework described in the previous chapter. We supposed that annuitants
can invest in a single fund whose returns are normally distributed (Black-Scholes model).
We also assumed a Hull-White diffusion for the short interest rate and a constant mortality
rate. Let’s suppose that we diffuse 10000 risk-neutral scenarios over 30 years (360 months)
for each Monte Carlo valuation. In practice, more than 100 000 paths are used to retrieve a
robust valuation. Let’s consider a portfolio containing 50000 VA policies and assume as in
[12] 200 000 cash flow projections per second. Then it would take the computer to generate
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the data approximatively:

1000× 360× 50000

200000projections/second
= 25hours

The computational cost of Monte Carlo-based valuation and hedging frameworks will be fur-
ther discussed at the end of this chapter to highlight the potential gains in speed introduced
by a neural network-based approach.

5.1.1 Gan and Valdez Synthetic portfolio of VA

We will be using in this chapter a synthetic portfolio of variable annuity contracts created
by Gan and Valdez (2017b) [] to facilitate the research related to the efficient valuation of
large variable annuity portfolios. The public dataset can be freely accessed on their website 1.

The synthetic portfolio is designed to mirror the major properties of real variable annuity
portfolios in the United States. For instance, policyholders have the right to choose their
placements among different investment funds provided by the insurer. They can combine
various guarantees in the same contract to meet their specific needs. Typically, annuitants
looking for financial protection for themselves or their children often combine the GMDB
and the GMWB riders. The fees for the combined guarantees are set equal to the sum of
the fees of the individual guarantees minus 0.20%.

The authors originally consider 19 variants of variable annuity contracts. These products
differ by the embedded guarantees (a single or several guarantees can be included) and the
benefit base revaluation mechanism. Gan and Valdez also compute the fair market values
and the Greeks of the integrated guarantees using a simple Monte Carlo simulation engine.
In this study, we will focus on 17 different products as described in the following table.
Refer to the previous chapter for a detailed description of the different guarantees.

Main assumptions

In this section, we present Gan and Valdez’s [11] public synthetic portfolio. We focus par-
ticularly on its construction and the different assumptions made by the authors. To be fully
able to exploit the database and enrich it with relevant variables that capture the economic
and demographic parameters used in the simulation task, we focus on an in-depth review of
the data generation process (the code used by the authors), which is available on the same
website.
The authors assume that each variable annuity contract is financed by a single premium
paid at the issue date.
The annuitant chooses a combination of funds in which they wish to invest among 10 funds
provided by the insurer. This premium will hence accumulate value through investment
returns. In their implementation, the authors use a fund mapping to map 10 investment
funds provided by the insurer to a combination of five tradable and liquid indices2. The
5 fund indices respectively track US large-cap equity, US small-cap equity, international
equity, fixed income, and money market fund.

1http://www.math.uconn.edu/~gan/software.html
2An index fund is an exchange-traded fund (ETF) designed to match the composition and performance

of a financial market index.
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Product Description Rider Fee
DBRP GMDB with return of premium 0.25 %
DBRU GMDB with annual roll-up 0.35 %
DBSU GMDB with annual ratchet 0.35 %
ABRP GMAB with return of premium 0.50 %
ABRU GMAB with annual roll-up 0.60 %
ABSU GMAB with annual ratchet 0.60 %
IBRP GMIB with return of premium 0.60 %
IBRU GMIB with annual roll-up 0.70 %
IBSU GMIB with annual ratchet 0.70 %
WBRP GMWB with return of premium 0.65 %
WBRU GMWB with annual roll-up 0.75 %
WBSU GMWB with annual ratchet 0.75 %
DBAB GMDB + GMAB with annual ratchet 0.75 %
DBIB GMDB + GMIB with annual ratchet 0.85 %
DBWB GMDB + GMWB with annual ratchet 0.90 %

Table 5.1 – Variable annuity contracts in the synthetic dataset (Guojun Gan* and Emiliano
A. Valdez) dataset

This approach is convenient for two reasons. First, most of the investment funds are not
tradable and can’t be used to hedge the contracts’ guarantees. In practice derivatives on
tradable indices are used via a fund mapping technique. The weights in the mapping func-
tion can be estimated by the method of least squares from the historical returns of both the
investment fund and the indices. Second, using tradable indices in the ESG model makes
the generated scenarios more realistic as they can be calibrated to the market.
The guarantees are financed by periodic risk charges deducted from the policy account. In
addition to the general Mortality & Expense (M&E) fee, exist specific rider fees for each
guarantee and management fees depending on the selected investment funds. The valuation
date of the synthetic portfolio is the 11th of June 2014.

The data generation process is structured around these three key steps :

• Yield curve generation: The authors do not use an interest rate model but rather
model fixed income indices directly. In this simplified approach they consider US
swap rates on the valuation date for 8 different tenors. They exploit Secant method
to bootstrap the corresponding discount factors and forward rates. These rates are
then interpolated using a loglinear method to to get monthly forward rates as shown
in this figure.3

• Scenario generation: The authors implemented a simple risk-neutral scenario gen-
erator. Its inputs are the forward curve bootstrapped from market swap rates, the
correlation matrix of the five modeled indices, and their volatilities. After simulating
several risk-neutral index scenarios according to a multivariate Black-Scholes model,
the fund map is used to allocate returns of the indices to each investment fund ac-
cording to the corresponding proportion of investment.

3The annualized continuous forward rate for period (tj−1, tj) is defined as: fj = 1
(tj−tj−1)

∫ tj
tj−1

rs ds
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The risk-neutral dynamics of the 5 indices are given by the following equation:

dS
(i)
t

S
(i)
t

= rt dt+
5∑
l=1

σil dW
(l)
t , S

(i)
0 = 1, i = 1, . . . , 5 (5.1)

with W (1)
t ,W

(2)
t , . . . ,W

(5)
t are independent standard Brownian motions, rt is the short

interest rate, and Σ = (σhl)1≤i,l≤5 denotes the covariance matrix of the annualized
continuous returns of the 5 indices. The solution of the stochastic differential equation
can be expressed as:

S
(i)
t = exp

[(∫ t

0

rs ds− t

2

5∑
l=1

σ2
il

)
+

5∑
l=1

σilB
(l)
t

]
, i = 1, . . . , 5 (5.2)

Fig. 5.1 shows the 1000 risk-neutral (RN) scenarios used to simulate the Large Cap
Equity index value4 over 30 years assuming the equity initial value S0 = 100. The
mean and covariance matrices of the multivariate geometric Brownian motion were
calibrated on historical returns of the considered indices between January 2000 and
May 2014. Recall that the valuation date of the portfolio is set to the 1st of June 2014.

Figure 5.1 – Example of equity investment risk neutral scenarios (S0 = 100)

• Policy generation: This part randomly generates a pool of variable annuities based
on realistic ranges for the different parameters. The synthetic portfolio consists of
annuitants born between 1950 and 1980 with a 40% female share. Policies are issued
between 2000 and 2014 with maturities from 15 and up to 30 years and an initial
account value between 50000 and 500000.
Investment funds for each policy are also randomly selected among the ten proposed
funds and the total account value is equally distributed between them. Fund manage-
ment fees are 30, 50, 60, 80, 10, 38, 45, 55, 57 and 46 respectively for the ten provided
funds. The synthetic portfolio includes 10000 policies of each product listed in the
table 5.1.

4This index’s benchmark is the S&P 500 index.
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• Monte Carlo valuation: This is the last block of code. The cash flows arising from
the different guarantees (death benefits+ life benefits and rider fees) are projected
according to the different risk-neutral paths. The market-consistent value, also known
as the fair market value (fmv) of each variable annuity contract guarantees is
computed as the discounted value of death and life benefits once risk charges are
deducted.

5.1.2 Data Enrichment

We aim to train a neural network to predict the liability (fair market value of the guaran-
tees) based on the main parameters and inputs fed to the simulation. The current database
gathers information about both the policyholders and the guarantee riders. After under-
standing the data generation process and the assumptions made by the authors, we can
extend the database with some important features reflecting the dynamics of the financial
and demographic processes used in the simulation phase. Report to Annex 5.3 for an insight
into the distributions of the main variables.
The table below summarizes the features existing in the original synthetic dataset and the
created ones.

Features Old Created
Policyholder-

related
gender, birth date age

Policy-related Issue date, Maturity date,
fund values, guarantee fee,
Rollup rate, Product type,
Guaranteed benefit (gbAmt)

Total withdrawal
Annual Withdrawal rate
Withdrawal balance

Policy age
Time to maturity

Diversification ratio (number of selected
funds/ number of available funds)

Account value (the sum of fund values)
Total fees
1Ratchet

Guarantee moneyness
Demographic - qx
Economic - Scaled first three principal components of

historical yield curve PCA
Price of zero-coupon with the same
maturity Equity investment adjusted

closing price
Equity investment adjusted volatility

The guarantee moneyness (M) is defined as M = (G − AV )/G, where AV is the ac-
count value. G refers to the guaranteed benefit amount (gbAmt) when the policy does not
include a withdrawal guarantee. For guarantees with a withdrawal option, G denotes the
withdrawal balance. To reflect the demographic conditions used for the valuation task, we
created qx the probability of dying in the next year based on the mortality table used for
the simulations5.

51996 Individual Annuity Mortality (IAM) in the US, tables 1698 and 1699 available on https://mort.
soa.org

64

https://mort.soa.org
https://mort.soa.org


A major risk factor impacting the valuation of variable annuities is interest rates risk.
To study this risk, we collect monthly market yields on U.S. Treasury securities for different
maturities (3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, and 10 years).
The historical dataset spans from January 2000 to June 2014 and can be easily accessed via
the Quandl API.6

Yield curves show many interest or market remuneration rates of debt securities, across
different maturities. They are generally expected to be upwards sloping, because of the
time value of money. Their levels also depend on the credit quality of the borrower as
interest rates tend to increase to compensate for the uncertainty of repayment. Therefore,
sovereign governments bonds are used to build the benchmark “risk-free” yield curve applied
to discount the expected future cash flows.

After cleaning filtering the data for the relevant information, we plot yield curves for
different points in time. Fig 5.2 highlights a decrease in both level and steepness over the
years.

Figure 5.2 – US Treasury yield curve

To reflect the main dynamics of the term structure of interest rates we decompose it into
its main drivers. For this, we apply a commonly used technique of dimension reduction:
Principal Component Analysis (PCA). This technique reduces the high dimensionality of

6Quandl is the API for Nasdaq Data Link, a platform that provides a large panel od financial and
economic datasets: //data.nasdaq.com
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the data by compressing the variability of all features into a limited set of transformed fea-
tures. We restricted the analysis to observations from 2008 onwards.

Let X the drivers of the interest rates term structure. In our case, each feature of X is a
vector of monthly yields for a given maturity. To capture the maximum variability of all
maturities, we assess the covariance matrix of X and derive its Eigenvectors. The three most
important eigenvalues which are generally interpreted as the height, slope, and curvature
of the yield curve; respectively account for 94.22%, 5.38%, and 0.28% of the total variance.
Their associated eigenvectors account for the term structure of the yield curve. We scale
the eigenvectors with respect to their explained variance proportion.

Figure 5.3 – US yield curve principal components

We recall that the multivariate Black Scholes model used in the economic scenario gen-
erator is calibrated on the considered five financial indices’ historical returns. The following
graph (fig. 5.4) shows the covariance matrix of the annualized continuous returns of the five
indices.

We use this matrix and the fund mapping function to define the Equity investment adjusted
volatility. This indicator provides an insight into the historical volatility of the investment
strategy for each policy. Similarly, the equity-adjusted closing price captures the perfor-
mance (level) of the investment strategy on the valuation date. We also use the forward
curve and discount factors bootstrapped by the authors from the US Swap rates to compute
for each policy the price of a zero-coupon bond maturing at the same date.
We should mention that for the eigenvectors as well as the ZC prices an interpolation method
(cubic spline interpolation) was applied to fill in the missing maturities with a monthly time
step.
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Figure 5.4 – Equity indices and investment funds correlation matrices

5.2 Results and further improvements

5.2.1 Numerical results

Preliminary correlation analysis (fig. 5.5) shows that the target variable is positively corre-
lated with the guaranteed benefit, the guarantee’s moneyness, and the roll-up rate. These
three variables seem to be strong drivers of the guarantee’s fair market value. The policy’s
age is also positively correlated with the guarantee’s fair value, this is consistent with the
fact that such policies are used to accumulate wealth. Both withdrawal balance and annual
withdrawal rate have a negative impact on the guarantee’s fair market value.

Since the variable annuity contracts are long-term contracts, the guarantees are usually
sensitive to the difference between current interest rates and long-term interest rates. This
difference in slope is generally captured by the second principal component of the yields
curve. In fact, the difference between 30-years rates and 3-months rates, generally inter-
preted as yields curve slope, is highly correlated with the second principal component (0.98%
estimated correlation).

For the training, we used the same architecture as in the previous chapters: a feed-
forward network. We emphasize the importance of input normalization. However, target
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Figure 5.5 – Main variables correlations

normalization did not seem to improve the model’s performance. We used a normalization
layer followed by 2 dense layers with 20-50 neurons each and an output layer with a lin-
ear activation. Applying an ELU activation function in the hidden layers yielded the best
performances. We chose to retain this generic architecture for the different models in this
section and tune the following parameters (number of neurons, number of training epochs,
batch size, and learning rate) for each trained model. We defined the mean absolute error
as the model’s loss function and minimized it using the Adam optimizer. Report to the first
chapter for more details about the training and tuning processes.
To assess to performance of the neural network we compare the model’s predictions with
Monte Carlo fair market values.

We first trained the model on the entire dataset (100 epoch, batches, and a learning
rate of 10−3 ). The neural network predicted the target given the type of the embedded
guarantees (product type), policy characteristics, the mortality context as derived from the
probability of death at the age on the valuation date, and economic scenario (equity and
bond prices, volatilities, etc..). Although both the training and validation losses decreased
significantly, the average relative error remained. The neural network does not seem to learn
the mapping function correctly. Increasing the number of neurons in each layer improves
the performance of the model on the training set but the results are less stable on the test
dataset. This could mean that the map function we try to approach via a neural network
is not continuous from one product class to another. The universal approximation theorem
may no longer apply.

To improve the predictions we defined 4 classes of products, each class includes guar-
antees of the same type. For products with several guarantees, we have chosen to include
them in the GMWB class if they include a withdrawal option and the GMDB class if they
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include a minimum death benefit.
Table 5.2 summarizes some cross-validation metrics computed on the test datasets for several
models.

Metrics The entire dataset GMWBs GMDBs GMABs GMIBs
R2 0.998 0.999 0.998 0.992 0.996
MAE (test) 1536 490 827 940 589
MARE (test) 7% 3% 5% 4% 4%
q0.95MARE (test) 20% 9% 10.3% 11,7% 9.8%

Table 5.2 – cross-validation metrics on the test datasets

In their paper [7], the authors used R-squared (R2) to “ study the relative effectiveness of
using neural networks to approximate MC simulations results for the different guarantees”.
The R2 obtained in this study is equally very high. However, we insist on the fact that
this metric does not assess the “goodness” of the neural network model and its capacity to
correctly predict the fair market values. It only shows the proportion of the target variable
variance that’s explained by the set of independent inputs in the regression model. A low
value would mean that the regression model is not valid, but a high value does not neces-
sarily mean high accuracy.

The table above (Table 5.2) shows that the neural network approach performs quite well
on average. It substantially yields better results for the different classes of products than
for the aggregated model. Both validation and test errors do not suggest any potential
overfitting.

Considerable speedups are obtained with a relatively marginal decline in accuracy. How-
ever, the method’s real-world applicability requires a deeper study and further investigations
to prevent aberrant predictions. In fact, relative errors distribution showed heavy tails (high
quantiles) with extreme values despite a preliminary prepossessing of inputs outliers.

5.2.2 Further improvements and applications

The results of the previous section show that the deep pricing approach can be applied to
complex variable annuities pricing. At this stage, the model is not appliable in the real
world as predictions still show some aberrant values despite a relatively small average error.
A deeper investigation of the outlier predictions is required. We suggest aging the portfolio
and adding the realized fair market values and realized equity prices to the inputs. Applying
a more sophisticated architecture, for instance, a recurrent neural network to capture path
dependencies reflected by the new inputs would improve the model’s performances.

We see a significant gain in computational efficiency when compared to the traditional
MC pricing methodologies. Computing the fair market values of the synthetic portfolio as
well as the greeks took the authors approximately 108 hours, while once trained the evalu-
ation of the neural network on the entire dataset takes no longer than 3 seconds.

The deep pricing framework is an interesting subject to research as it could highly im-
prove several computationally demanding tasks. For instance, it can be used to compute
policies sensibilities (greeks) simply via the usual bump method (refer to Annex 6) and
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for Solvency capital requirements (SCR) estimations. These tasks generally require nested
Monte Carlo simulations with an outer loop spanning a set of real-world scenarios and an
inner loop used for the pricing of the guarantees via risk-neutral scenarios.

Policyholder behavior: a key assumption and a significant risk factor

For the sake of simplicity, static assumptions regarding the frequency and magnitude of
policy lapse rates and withdrawal rates (in the case of guaranteed withdrawal benefits) were
made. No dynamical lapse or withdrawal models were considered. Although simplifying
assumptions are usually made by insurers, these modeling hypotheses are critical and shed
light on one of the main risk factors in variable annuity modeling: policyholder behavior.

Policyholder behavior risk is the risk that the insurer’s expectations in terms of policyhold-
ers’ benefit utilization (particularly withdrawal) and surrender do not align with annuitants’
conduct resulting in a misestimation of the insurer’s engagements. Insurers’ expectations
and assumptions vary according to the type of guarantee and are generally based on internal
studies (historical experience) as well as external studies (behavioral economics, etc.).

Although the fair values estimated in this chapter are based on static assumptions, we
should mention that, in reality, surrender rates and benefit utilization are dynamic. In fact,
policyholders interact with their environment when making their investment decision.
For instance, their rational behavior suggests seeking better investment opportunities when
the market is rising (higher lapse rates and/or withdrawals) and passing on the risk to the
insurer when the market is declining (lower lapse rates and/or withdrawals). The timing as
well as the magnitude of withdrawals and policy surrenders can have a significant impact
on the cost of the guaranteed benefits, reserves, and capital. Therefore, shifting to dynamic
behavior modeling can improve the understanding of the guarantees underlying risks and
yield more market-consistent fair values.
Behavior modeling is nevertheless particularly challenging especially when little sound ex-
perience data is available to assess the validity of the modeling assumptions.

We acknowledge that based on our simplifying static assumptions, policyholders’ behav-
ior risk has not been properly taken into account, which is a limitation of this approach.
However, we stress the importance of the policy-oriented aspect of the deep pricing approach
compared to the commonly used aggregated approaches particularly inforce compression
methods.
Viewing policyholders as individuals rather than averages is a valuable aspect of the deep
pricing framework as it can be used to reflect and understand the individual, causal factors
of decision making and hence improve the assessment of holders ‘behavior risk. Such an
individual view has only recently become possible thanks to the continuous research in cog-
nitive science and behavioral economics. Using dynamic lapse and withdrawal assumptions
in the Monte Carlo simulation engine might enhance the model’s real-world applicability by
reflecting the individual decision-making dynamics in the guarantees’ computed fair values.

The deep pricing approach can also help alleviate the policyholder’s behavior risk by aver-
aging the predicted market values of each policy (individually) on a set of static lapse and
withdrawal assumptions. This is possible once the neural network is trained and tuned, as
the evaluation of the pricing function on different input variables is instantaneous and does
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not involve further Monte Carlo simulations.

While the proposed approaches can help better understand and manage holders’ behavior
risk, they are still insufficient. Product design solutions are often essential. One needs
to avoid product designs, that favor crystallization of losses for many policyholders at the
same time. In practice, insurers rely on penalty-based solutions. For instance, many insur-
ers would penalize early surrenders and lapses within the first years of policy life pushing
policyholders to alter their behaviors to avoid penalties.
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Conclusion

The deep pricing framework presented in this study consists in training a neural network
to predict the value of a financial instrument or a policy in a given model based on a set
of inputs/ parameters. These inputs charactetrize both the valuation model and the priced
policy.
The neural network can be trained to predict a dingle value (price) or a price surface de-
pending on the application. In the deep calibration framework, the trained neural network
("fast surface") can map relatively accurately the inputs on a given parameter space of
interest to the model prices, outperforming Monte Carlo simulations by trading off compute
time for training with inference time for pricing .

This fast surface is then used to calibrate a given model according to two different ap-
proaches. Either by simply replacing the pricing functional with the learned "fast surface"
to solve the inverse problem using classical optimization technics. Or, by leveraging the fact
that the NN is a nested function of the input parameters whose gradient is known analyt-
ically to minimize the L2 loss with respect to the model parameters. In fact, The gradient
is analytically known not only for the weights and biases but also for the input parameters
thanks to the backpropagation principle.

We trained and test this methodology on the pricing and calibration of two commonly
used option pricing models: the Black and Scholes model and the Heston model.
A major strength of both the deep pricing and deeep calibration frameworks developped
during this internship is their flexibility genericness and capacity to be adjusted to different
financial instruments and models.

Throughout this study, we highlighted how these alternatives introduce considerable
calculations speedups compared to the Monte Carlo approach and presented different risk
management applications in both finance and insurance. In the last chapter we trained a
neural network to predict the liability of equity-linked insurance policies, variable annuities.
Eventhough this approach significantly reduced the runtime and yielded relatively low errors,
the model still needs to be adjusted to prevent aberrant predictions and ensure stability in
order to be employed in the real world.

Our work, has many other avenues for improvement and research. Among them, re-
searching more advanced sampling methods for the data generation phase. An approach
that combines information from historic market data with a synthetic data generator algo-
rithm would produce more market-consistent samples and induce better performances. For
the synthetic portfolio it would be interesting to age the portfolio and integrate realized fair
market values and equity scenarios. Additionally, we can further optimize the hyperparam-
eters and consider more complex neural networks architectures. For instance, a recurrent
neural network could be more adapted for variable annuities as it helps capture path/time
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dependencies.
Improving the performance metrics used for surface mapping is also required. In fact, to
assess the performance of the different trained models and to choose the optimal hyperpa-
rameters, we averaged the relative errors on test samples generated according to the same
grid points for both the option’s moneyness and time to maturity. It would be more inter-
esting to calculate the errors on other points of the surface. This new error will reflect, in
addition to the training error, the model’s interpolation error.

Moreover, the second calibration approach, although theoretically attractive, still needs
to be researched and improved. In particular, using an adaptive gradient descent method
(adapting the learning rates using the order of magnitude of the parameters) is recom-
mended. Its convergence rate also depends on the initialization point of the search and
could be further investigated.

We finally highlight that we strongly advocate this separation of pricing and calibration
in a neural network-based calibration framework. Although, it might be tempting to apply
a neural network to directly estimate model parameters from market prices without using
a pricing function based on a traditional model. This approach imposes several issues. As
explained by Horvath et al.[17] these approaches might not align with the prevailing regu-
latory requirements due to their lack of interpretability. Furthermore, it is more difficult to
prove their stability and robustness as required by regulators.
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Annexes

Annex 1: The Heston Model’s Characteristic Function

We recall Heston’s equations:

dSt = rStdt+ ρ
√
VtStdBt +

√
1− ρ2

√
VtStdWt

dVt = k (θ − Vt) dt+ σ
√
VtdBt

(5.3)

The explicit formula for the Heston model’s characteristic function f is obtained by applying
Itô’s Lemma to f(t, St, Vt) and multivariable Taylor series expansion (see [8] for the full
proof). We obtain the explicit following formula, where T − t = τ :

f(iφ) = eA(τ)+B(τ)St+C(τ)Vt+iφSt

A(τ) = riφτ +
kθ

σ2

[
−(ρσiφ− k −M)τ − 2 ln

(
1−NeMτ

1−N

)]
B(τ) = 0

C(τ) =

(
eMτ − 1

)
(ρσiφ− k −M)

σ2 (1−NeMτ )

Where

M =
√

(ρσiφ− k)2 + σ2 (iφ+ φ2)

N =
ρσiφ− k −M
ρσiφ− k +M

(5.4)

Annex 2: The free boundary problem: americain call option PDE

Let u(t, x) the pricing function of an americain call option with underlying x. u(t, x) verifies
the following PDE, with L a differential operator.

∂tu(t, x) + Lu(t, x) = 0, (t, x) ∈ [0, T ]× Ω
u(0, x) = u0(x), x ∈ Ω
u(t, x) = g(t, x), x ∈ [0, T ]× ∂Ω

(5.5)

where ∂Ω is the bondary of the domain Ω. We approximate the function f(t, x) by minimis-
ing an L2 error based on the previous pricing PDE. This error is reflected by the following
loss function:

J(f) = ‖∂tf + Lf‖2
2,[0,T ]×Ω + ‖f − g‖2

2,[0,T ]×∂Ω + ‖f(0, ·)− u0‖2
2,Ω (5.6)

Annex 3: Valuation formulas for the GMDB guarantee

Let St the value of the fund at time t and α its continuously compounded dividend yield.
For simplicity we take S0 = 1. The mortality risk x is a random variable with cumulative
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distribution Fx and a probability density f(t).
The undiscounted insurer’s engagement for GMDB guarantees at maturity T = tdeath, VT
can be expressed as following:
The premium return:

Ex [VT ] = Ex [max (1− ST , 0)]

= Ex [E [max (1− St, 0) | T = t]]

= Ex[Put(1, 1, t)] =

∫ ∞
0

Put(1, 1, t)dFx(t)

=

∫ ∞
0

Put(1, 1, t)f(t)dt

= e−rtN
(
−d2

√
t
)
− e−αtN

(
−d1

√
t
)

(5.7)

where N the Gaussian cumulative distribution function and d1 =
r−α+ 1

2
σ2

σ
and d2 = d1 − σ

The rollup option with rate rRU :
A similar formula can be derived for the rollup option we only need to adapt the strike.
The ratchet option:
For the GMDB guarantee with a ratchet option, the put is replaced by a look-back option :

Ex [VT ] =

∫ ∞
0

GSG(t | σ, r, α)f(t)dt (5.8)

where GSG is the Goldman, Sosin and Gatto look-back option valuation[14].

GSG(t | σ, r, α) = e−rtN
(
−ξ2

√
t
)
− e−αtN

(
−ξ1

√
t
)
− η

(
e−rtN

(
ξ3

√
t
)
− e−αtN

(
ξ1

√
t
))

where η = σ2

2(r−α)
ξ1 =

r−α+ 1
2
σ2

σ
ξ2 = ξ1 − σ ξ3 = ξ1 − 2(r−α)

σ

Annex 4: Examples of metamodeling approaches for VA pricing in
the literature
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Annex 5: Synthetic portfolio descriptive statistics

mean min 25% 50% 75% max

Rollup rate 0.01 0.00 0.00 0.00 0.05 0.05
Guaranteed benefit 313720.97 50001.72 179977.79 303612.02 427668.27 989145.57
Gmwb Balance 45778.27 0.00 0.00 0.00 34772.29 499708.73
Withdrawal rate 0.01 0.00 0.00 0.00 0.05 0.05
Total withdrawal 27775.21 0.00 0.00 0.00 7614.84 499585.73
Fund 1 Value 25926.72 0.00 0.00 7475.51 38170.53 847749.69
Fund 2 Value 25379.76 0.00 0.00 7546.12 37435.13 844322.70
Fund 3 Value 16985.49 0.00 0.00 4333.06 23510.50 580753.42
Fund 4 Value 14198.31 0.00 0.00 3669.26 20223.12 483936.90
Fund 5 Value 20425.64 0.00 0.00 6419.48 31049.96 494381.61
Fund 6 Value 25899.64 0.00 0.00 7586.89 38076.04 872706.64
Fund 7 Value 20974.33 0.00 0.00 5879.06 30165.74 634819.08
Fund 8 Value 19494.57 0.00 0.00 5522.71 28586.55 562485.37
Fund 9 Value 19304.74 0.00 0.00 5390.37 27400.15 663196.22
Fund 10 Value 20454.52 0.00 0.00 5965.87 30263.87 555121.41
Fair market value 93856.41 -69938.25 758.21 36989.80 104331.70 1784549.09
Time to maturity 14.53 0.59 10.34 14.51 18.76 28.52
Policyholder age 49.50 34.50 42.00 49.50 57.00 64.50
Policy age 7.47 0.50 4.00 7.50 11.01 14.42
Fund fees 0.03 0.00 0.01 0.03 0.04 0.05
qx 0.00 0.00 0.00 0.00 0.00 0.01
Equity adjusted vol 0.49 0.00 0.24 0.49 0.74 0.92
Equity adjusted close 6660.77 0.00 3380.84 6668.45 10241.61 12469.24
Number of funds - 0.00 3.00 5.00 8.00 10.00
Guarantee moneyness 0.25 -1.53 -0.01 0.27 0.45 1.00
Ratchet option 0.53 0.00 0.00 1.00 1.00 1.00

Table 5.3 – Synthetic portfolio descriptive statistics

Annex 6: Bump Method

Let Z be a random variable on (Ω,F ,R) −→ (R,B(R)).
Let F be a function F : (x, Z) 7−→ F (x, Z), x ∈ I ⊂ R and F (x, Z) ∈ L2(Ω),∀x ∈ I. Define
f as:

f(x) = E[F (x, Z)]

The Bump method refers to the following approximation of f ′(x).

f ′(x)
ε→0∼ f(x+ ε)− f(x− ε)

2ε

≈ 1

M

M∑
i=1

F (x+ ε, Zi)− F (x− ε, Zi)
2ε
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Executive summary

Introduction

Regulators are imposing more stringent requirements on both banks and insurance compa-
nies in monitoring their key risk metrics. For instance, the Fundamental Review of The
Trading Book (FRTB) under the internal model approach (IMA) now, requires the calcu-
lation of expected shortfall (ES) and stressed ES with multiple liquidity horizons for each
risk category, compared to a single liquidity horizon and calculations of value at risk (VaR)
and stressed VaR under Basel III.
These requirements increase by more than tenfold the computational requirements to as-
sess market risk capital and make the management of portfolios with highly complex and
structured products a challenging task. Therefore, exploring new approaches adaptable for
high-dimensional problems that challenge Monte Carlo (MC) simulations accuracy and out-
perform their computational efficiency becomes a crucial goal for the industry.
In this report, we use neural networks (NN) as universal approximators, to learn the pricing
function on a given parameters space of interest. We present two approaches to tackle com-
monly used option pricing models calibration differently. Considerable calculations speedups
compared to the MC approach can be achieved by trading off compute time for training
with inference time for pricing and thus induce drastic improvements in both the financial
and insurance sectors. For instance, this approach can make live exotic option pricing a
realistic goal and model calibration an easier task especially for products that require intra-
day valuations of their key risk metrics. This can typically be useful for insurers managing
and hedging the risks associated with Variable Annuity (VA) contracts. Although MC sim-
ulations are widely adopted by insurance companies for the valuation of their VA portfolios,
the complex structure of these contracts makes their accurate valuation a computationally
demanding task.

Learning a model price function with a neural network

A preliminary step of the project is a proof of concept on vanilla products (call and put
options), to see if this approach can be considered for more complex products. Although, our
implementation is flexible and can be adapted to different diffusion models and products.
We first analyzed the results for the pricing of European vanilla options in the Black-Scholes
model and a stochastic volatility model (Heston). Then extended the approach to Asian
options. Unlike market approaches that aim to directly approximate the market prices
(model-free approaches), our work will focus on model pricing. We train a neural network
to learn a model’s price function on a given input space. This choice is justified by the fact
that we do not wish to introduce a ’black box’ model to predict market prices. But we
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rather wish to stick to a model and challenge the current methods mainly MC approaches.
Two approaches are mentioned in the literature:

• A supervised approach based on minimizing the difference between the predicted and
the target prices.

• An unsupervised approach consisting of minimizing a loss function, conveniently de-
fined, based on a partial differential equation (PDE) verified by the option prices.
We do not need to compute a target output y and train the NN to map the input
parameters to the output (as in the supervised approach).

We briefly explored the second approach via the example of the deep Galerkin method
(DGM). But we focused on the first one, which we developed in this report. Since it was
more aligned with the next step (deep calibration).
Data generation was a crucial step. We tried different sampling methods to generate the
training data. Using a uniform distribution, caused the training dataset to be very unbal-
anced, with many samples being purely theoretical. The model’s performance was therefore
highly correlated to the moneyness of the option. Consequently, we built different models
by moneyness class to improve the model’s accuracy.
With more hindsight, this seems problematic as it favors overfitting and undermines the
approach’s generality.
Used to a truncated normal distribution globally improved the model’s accuracy. Finally,
fixing the moneyness of the generated samples to a given grid, yielded more financially con-
sistent samples and drastically improved the model’s performance.
We used two types of metrics to assess the model’s performance: averaged absolute errors
and relative errors, and used k-fold cross-validation to avoid overfitting. After the tuned NN
has proved to correctly map the pricing function for European vanilla options (The average
absolute error equals 0..1% of the strike price and the average relative error was 6% ), we
tested the approach on more complex options for example Asian options.
In light of the models’ performances, the deep pricing approach is promising. It can correctly
learn and map the pricing function on a given parameters space of interest and instanta-
neously predict the price surface for different market settings ("fast surface"). Once the
NN is trained, computationally expensive MC simulations can be discarded. We should
finally highlight that in this approach, the sampling method is crucial. It’s the case for both
the supervised and unsupervised approaches. One could criticize the fact that the training
samples, generated randomly, do not reproduce the historical market prices representativity.
But this can be an advantage in stressed scenarios for example, where market settings are
generally not historical, but rather unforeseen rare scenarios.
A major limitation of this approach is the fact that the model cannot by default, guarantee
no-arbitrage principle.
Predicting price surfaces rather than individual prices to help the model did not guarantee
no-arbitrage. It only ensures more smooth surface predictions. A classical approach consists
of regularization. In fact, the option pricing theory provides necessary and sufficient condi-
tions for options to be arbitrage-free. These constraints are added as new penalty terms to
the loss function.
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The deep calibration approach: presentation and limits

In the next step, we focus on solving the inverse problem. Given a price surface/volatility
surface, we search for the model parameters such that the model prices best approximate
the given surface according to an appropriate metric. Often the L2. Many approaches are
to consider in solving this problem from a machine learning point of view.

• Directly learning the map from the data (prices and observables variables) to the
model parameters. This method was not retained and we justified this choice based
on its limits.

• Learning the pricing map and then replacing the pricing functional with the learned
"fast surface" to solve the inverse problem using the classical minimization technics.

• Learning the pricing map ("fast surface") and leveraging the fact that the NN is a
nested function of the input parameters whose gradient is known analytically. The
gradient is known not only for the weights and biases but also for the input param-
eters (model parameters + observables parameters) thanks to the backpropagation
principle. Hence we can apply the gradient descent algorithm to minimize the L2 loss
with respect to the model parameters.

We trained a "fast surface" NN. For that, we artificially generated the training dataset:
the parameters are sampled from uniform distributions whose extremes are defined a priori
(This defines our space of interest). We also used a fixed grid for both option’s moneyness
(m = S0

K
)and time to maturity(ttm). Then, we generate the model price associated with

each set of parameters.
Once the "fast surface" NN is trained and tuned, we use it to test the two calibration ap-
proaches. We generated Heston implied volatility surfaces for dates from 31/12/2020 to
30/01/2121 using Quantlib
The model parameters are known and saved. We mask this information and apply the two
previously described approaches to predict them. We then compare the implied volatility
surface (IVS) generated using the predicted parameters and the target IVS to assess the
approach’s performance.

Both approaches are very quick to calibrate surfaces. The first approach calibrates well
to the target surface. The second method seems to have problems with the calibration of
the kappa and more generally when there is a significant difference in scale between the
parameters to be calibrated. Opting for different learning rates to update the input param-
eters in the gradient descent algorithm would probably help. This method’s convergence
also depends on the initialization. For that, it’s not very robust. These limitations need to
be further analyzed.

Our approach has several other limitations that can be improved: First, to assess the
performance of the different trained models and to choose the optimal hyperparameters, we
averaged the relative errors on a test sample generated according to the same approach and
therefore the same grid points for both the option’s moneyness and time to maturity. It
would be more interesting to calculate the errors on other points of the surface. This new
error will reflect, in addition to the training error, the model’s interpolation error.
Regarding the calibration approach, the method using the “fast surface” to optimize the
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loss function by traditional optimization algorithms is globally more efficient than the sec-
ond approach, which we tried to formalize. Both approaches save a considerable amount
of time compared to traditional calibration methods (On average the calibration time of a
one-month history is 1s for the first approach and 600ms for the second one).

The second calibration approach, although attractive, still needs to be researched and
improved, in particular by using an adaptive gradient descent method (adapting the learning
rates using the order of magnitude of the parameters). Its convergence rate also depends
on the initialization point of the search and could be further improved. It would also be
interesting to rethink the convergence criterion and to find a compromise between the speed
of convergence and the accuracy of the calibration.
Although it is highly recommended to build this approach on synthetic data for the train-
ing phase of the NN, the approach should be validated on market data for the calibration
phase. Knowing the real parameters that generate the surfaces to be calibrated allowed us
to better identify the flaws of each approach. We applied these calibration techniques on
CAC 40 market volatility surface, the results were comparable, with higher accuracy for the
first approach.

Potential applications of the approach

To sum up, stricter regulatory requirements introduce a significant computational challenge
to which banks need to adapt their current methods. The "fast surface" approach can sig-
nificantly alleviate this computational burden.
The deep learning approach introduced in this work can also be applied to stress tests. Since
the network is trained on synthetic data, it does not introduce any historical bias to value
a portfolio in an extreme market configuration.
The calibration approach can be applied in the context of model validation/monitoring,
for instance, for front-end pricers, in the context of P&L assessment. The trained network
learns to replicate the model used in the pricers. Thus, it can find the calibrated model pa-
rameters from the generated data and validate their relevance in a monitoring/audit stage.
We finally highlight that we strongly advocate this separation of pricing and calibration in
a neural network-based calibration framework. Although, it might be tempting to apply a
neural network to directly estimate model parameters from market prices without using a
pricing function based on a traditional model. This approach imposes several issues. These
approaches might not align with the prevailing regulatory requirements due to their lack of
interpretability.

Variable Annuities deep pricing application

We Finally adapted the deep pricing approach to the case of insurance contracts with com-
plex guarantees, for instance, variable annuities. We trained a neural network to predict
Monte Carlo market fair values from a set of inputs generally fed to the simulations. Al-
though the model seemed to perform quite well with the different types of guarantees we
tested (an average relative error below 5%), the error distribution showed relatively fat tails
with some extreme values that could not adjust even after preprocessing the outliers. Signif-
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icant calculations speedups compared to the Monte Carlo simulations are achievable, once
the neural network is correctly trained. This is typically the case for greeks calculations and
SCR (Solvency Capital Requirement) estimation which generally involves nested stochastic
simulations. We believe training the neural network on different economic scenarios, includ-
ing previously realized fair market values and trying recurrent neural networks(which are
excellent in capturing path dependencies), would help achieve higher model accuracy.
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